ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - R. Chipaux 2008
Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Structural design models of the mirror and detector sate llites have been built and used as baseline for our simulations, to evaluate the different background contributions that must be taken into account to determine the sensitivity of the Simbol-X detectors. We work towards a simulation based background and mass model which can be used before and during the mission. For different material compositions, material thicknesses, locations etc. the response of the instrument to the diffuse cosmic hard X-ray background and to the cosmic proton induced background have been calculated. As a result we present estimates of the background count rate expected in the low and high energy detector, and anti-coincidence rates. The effect of induced radioactivity in the detector and shielding materials and soft proton scattering in the mirror shells are also under study.
393 - F. Fiore , M. Arnaud , U. Briel 2008
Simbol-X is a French-Italian mission, with a participation of German laboratories, for X-ray astronomy in the wide 0.5-80 keV band. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push gr azing incidence imaging up to ~80 keV, providing an improvement of roughly three orders of magnitude in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This will open a new window in X-ray astronomy, allowing breakthrough studies on black hole physics and census and particle acceleration mechanisms. We describe briefly the main scientific goals of the Simbol-X mission, giving a few examples aimed at highlighting key issues of the Simbol-X design.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا