ترغب بنشر مسار تعليمي؟ اضغط هنا

Hints for a GeV component in the emission from GRBs are known since the EGRET observations during the 90s and they have been recently confirmed by the data of the Fermi satellite. These results have, however, shown that a fully satisfactory interpret ative framework of the GRB phenomena is still lacking. The MAGIC telescope opens the possibility to extend the measurement of GRBs in the several tens up to hundreds of GeV energy range. From the theoretical point of view, both leptonic and hadronic processes have been suggested to explain the possible GeV/TeV counterpart of GRBs. Observations with ground-based telescopes of very high energy photons (E>30 GeV) from these sources are going to play a key role in discriminating among the different proposed emission mechanisms which are barely distinguishable at lower energies. MAGIC telescope observations of the GRB090102 (z=1.547) field from 03:14:52 UT to 06:54:01 UT are analyzed to derive upper limits to the GeV/TeV emission. We compare these results to the expected emissions evaluated for different processes in the framework of the standard fireball model. The results we obtained are compatible with the expected emission but cannot yet set further constraints on the theoretical scenario. However, the difficulty in modeling the low energy data for this event makes it difficult to fix in an unambiguous way the physical parameters which describe the fireball. Nonetheless, the MAGIC telescope, thanks to its low energy threshold and fast repositioning, is opening for the first time the possibility to fill the energy gap between space-based gamma detectors and the ground-based measurements. This will makes possible GRBs multiwavelength studies in the very high energy domain.
In this paper we present multiband optical polarimetric observations of the VHE blazar PKS 2155-304 made simultaneously with a H.E.S.S./Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the dataset allowed us to study in detail the temporal evolution of the emission and we found that the particle acceleration timescales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarised mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large scale field is locally organised by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا