ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse problems are ubiquitous because they formalize the integration of data with mathematical models. In many scientific applications the forward model is expensive to evaluate, and adjoint computations are difficult to employ; in this setting der ivative-free methods which involve a small number of forward model evaluations are an attractive proposition. Ensemble Kalman based interacting particle systems (and variants such as consensus based and unscented Kalman approaches) have proven empirically successful in this context, but suffer from the fact that they cannot be systematically refined to return the true solution, except in the setting of linear forward models. In this paper, we propose a new derivative-free approach to Bayesian inversion, which may be employed for posterior sampling or for maximum a posteriori estimation, and may be systematically refined. The method relies on a fast/slow system of stochastic differential equations for the local approximation of the gradient of the log-likelihood appearing in a Langevin diffusion. Furthermore the method may be preconditioned by use of information from ensemble Kalman based methods (and variants), providing a methodology which leverages the documented advantages of those methods, whilst also being provably refineable. We define the methodology, highlighting its flexibility and many variants, provide a theoretical analysis of the proposed approach, and demonstrate its efficacy by means of numerical experiments.
In this paper, we study the diffusive limit of solutions to the generalized Langevin equation (GLE) in a periodic potential. Under the assumption of quasi-Markovianity, we obtain sharp longtime equilibration estimates for the GLE using techniques fro m the theory of hypocoercivity. We then prove asymptotic results for the effective diffusion coefficient in three limiting regimes: the short memory, the overdamped and the underdamped limits. Finally, we employ a recently developed spectral numerical method in order to calculate the effective diffusion coefficient for a wide range of (effective) friction coefficients, confirming our asymptotic results.
In this paper we consider systems of weakly interacting particles driven by colored noise in a bistable potential, and we study the effect of the correlation time of the noise on the bifurcation diagram for the equilibrium states. We accomplish this by solving the corresponding McKean-Vlasov equation using a Hermite spectral method, and we verify our findings using Monte Carlo simulations of the particle system. We consider both Gaussian and non-Gaussian noise processes, and for each model of the noise we also study the behavior of the system in the small correlation time regime using perturbation theory. The spectral method that we develop in this paper can be used for solving linear and nonlinear, local and nonlocal (mean-field) Fokker-Planck equations, without requiring that they have a gradient structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا