ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent observations of a zero bias conductance peak in tunneling transport measurements in superconductor--semiconductor nanowire devices provide evidence for the predicted zero--energy Majorana modes, but not the conclusive proof for their existence . We establish that direct observation of a splitting of the zero bias conductance peak can serve as the smoking gun evidence for the existence of the Majorana mode. We show that the splitting has an oscillatory dependence on the Zeeman field (chemical potential) at fixed chemical potential (Zeeman field). By contrast, when the density is constant rather than the chemical potential -- the likely situation in the current experimental set-ups -- the splitting oscillations are generically suppressed. Our theory predicts the conditions under which the splitting oscillations can serve as the smoking gun for the experimental confirmation of the elusive Majorana mode.
We study the superconducting proximity effect between a conventional semiconductor and a disordered s-wave superconductor. We calculate the effective momentum relaxation rate in the semiconductor due to processes involving electron tunneling into a d isordered superconductor and scattering off impurities. The magnitude of the effective disorder scattering rate is important for understanding the stability of the topological (chiral p-wave) superconducting state that emerges in the semiconductor, since disorder scattering has a detrimental effect and can drive the system into a non-topological state. We find that the effective impurity scattering rate involves higher-order tunneling processes and is suppressed due to the destructive quantum interference of quasi-particle and quasi-hole trajectories. We show that, despite the fact that both the proximity-induced gap and the effective impurity scattering rate depend on interface transparency, there is a large parameter regime where the topological superconducting phase is robust against disorder in the superconductor. Thus, we establish that the static disorder in the superconductor does not suppress the proximity induced topological superconductivity in the semiconductor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا