ترغب بنشر مسار تعليمي؟ اضغط هنا

One goal of physics instruction is to have students learn to make physical meaning of specific mathematical ideas, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor, using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency with the Taylor series despite previous exposures in both calculus and physics courses. We present students successes and failures both using and interpreting Taylor series expansions in a variety of contexts.
We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation (FMCE). Our goal is to move beyond the expert/novice analysis of student learning based on pre-/post-testing a nd the correctness of responses (either on the overall test or on clusters of questions defined solely by content). We use a resources framework, taking special note of the contextual and representational dependence of questions with seemingly similar physics content. We analyze clusters in ways that allow the most common incorrect answers to give as much, or more, information as the correctness of responses in that cluster. Furthermore, we show that false positives can be found, especially on questions dealing with Newtons Third Law.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا