ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,00 0) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $sim$ 2.197) whose image separation angle, $theta$ $sim$ 22$^{primeprime}!!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $Delta t$ $sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorbers size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 years (1-3.5 years in the quasar rest-frame). We present the observational data and th e conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems nor in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable broad absorption lines. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density $sim$ 10$^3$-10$^5$ cm$^{-3}$ and upper limits on the distance of the absorbers from the central engine of order a few kpc. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.
We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of tar geted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.
We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z_em ~ 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separat ion angle of ~ 22.5. The large angular separation suggests that the sight-lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasars as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, ~ 774 days, or to the fine structure of quasar outflows probed by the multiple sight-lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.
46 - Jian Wu 2010
We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high resolution spectra of three quasars at z=2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V li nes that are strong relative to the Ly-alpha lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U ~ 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad-emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few solar masses per year under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.
Large organic molecules and carbon clusters are basic building blocks of life, but their existence in the universe has not been confirmed beyond doubt. A number of unidentified absorption features (arising in the diffuse inter-stellar medium), usuall y called ``Diffuse Inter-stellar Bands (DIBs), are hypothesized to be produced by large molecules. Among these, buckminsterfullerene C_60 has gained much attention as a candidate for DIB absorbers because of its high stability in space. Two DIBs at ~9577A and 9632A have been reported as possible features of C_60^+. However, it is still not clear how their existence depends on their environment. We obtained high-resolution spectra of three stars in/around the Orion Nebula, to search for any correlations of the DIB strength with carriers physical conditions, such as dust-abundance and UV radiation field. We find three DIBs at ~9017A, 9210A, and 9258A as additional C_60^+ feature candidates, which could support this identification. These DIBs have asymmetric profiles similar to the longer wavelength features. However, we also find that the relative strengths of DIBs are close to unity and differ from laboratory measurements, a similar trend as noticed for the 9577/9632 DIBs.
We measure the physical properties of a local multi-component absorption-line system at V_sol ~ 200 km/s toward the quasar PKS0312-770 behind the Magellanic Bridge (MB) using Hubble Space Telescope STIS spectroscopy in conjunction with photoionizatio n modeling. At an impact parameter of ~ 10 kpc from the Small Magellanic Cloud (SMC), this sightline provides a unique opportunity to probe the chemical properties and ionization structure in a nearby absorption line system with a column density of logN(HI) ~ 20.2, at the transition between Damped Lyman Alpha (DLA) and sub-DLA systems. We find that metallicity of -1.0 < logZ < -0.5 and ionization parameter of -6 < logU < -5 for three low-ionization components and logU ~ -2.6 for one high-ionization component. One component at V_sol = 207 km/s shows an alpha-element abundance log(Si/H) ~ -5.0, making it ~ 0.2 dex more metal rich than both SMC H II regions and stars within the MB and the SMC. The N/Si ratio in this component is log(N/Si) = -0.3+/-0.1, making it comparable to other N-poor dwarf galaxies and ~ 0.2 dex lower than H II regions in the SMC. Another component at V_sol = 236 km/s shows a similar Si/H ratio but has log(N/Si) = -1.0+/-0.2, indicating a nitrogen deficiency comparable to that seen in the most N-poor DLA systems. These differences imply different chemical enrichment histories between components along the same sightline. Our results suggest that, if these absorbers are representative some fraction of DLA systems, then 1) DLA systems along single sight-lines do not necessarily represent the global properties of the absorbing cloud, and b) the chemical composition within a given DLA cloud may be inhomogeneous.
We present an analysis of the chemical and ionization conditions in a sample of 100 weak Mg II absorbers identified in the VLT/UVES archive of quasar spectra. Using a host of low ionization lines associated with each absorber in this sample, and on t he basis of ionization models, we infer that the metallicity in a significant fraction of weak Mg II clouds is constrained to values of solar or higher, if they are sub-Lyman limit systems. Based on the observed constraints, we present a physical picture in which weak Mg II absorbers are predominantly tracing two different astrophysical processes/structures. A significant population of weak Mg II clouds, those in which N(Fe II) is much less than N(Mg II), identified at both low (z ~ 1) and high (z ~ 2) redshift, are potentially tracing gas in the extended halos of galaxies, analogous to the Galactic high velocity clouds. These absorbers might correspond to alpha-enhanced interstellar gas expelled from star-forming galaxies, in correlated supernova events. On the other hand, N(FeII) approximately equal to N(Mg II) clouds, which are prevalent only at lower redshifts (z < 1.5), must be tracing Type Ia enriched gas in small, high metallicity pockets in dwarf galaxies, tidal debris, or other intergalactic structures.
Through photoionization modeling, constraints on the physical conditions of three z ~ 1.7 single-cloud weak Mg II systems (W_r(2796) < 0.3A) are derived. Constraints are provided by high resolution R = 45,000, high signal-to-noise spectra of the thre e quasars HE0141-3932, HE0429-4091, and HE2243-6031 which we have obtained from the ESO archive of VLT/UVES. Results are as follows: (1) The single-cloud weak Mg II absorption in the three z ~ 1.7 systems is produced by clouds with ionization parameters of -3.8 < logU < -2.0 and sizes of 1-100 pc. (2) In addition to the low-ionization phase Mg II clouds, all systems need an additional 1-3 high-ionization phase C IV clouds within 100 km/s of the Mg II component. The ionization parameters of the C IV phases range from -1.9 < logU < -1.0, with sizes of tens of parsecs to kiloparsecs. (3) Two of the three single-cloud weak Mg II absorbers have near-solar or super-solar metallicities, if we assume a solar abundance pattern. Although such large metallicities have been found for z < 1 weak Mg II absorbers, these are the first high metallicities derived for such systems at higher redshifts. (4) Two of the three weak Mg II systems also need additional low-metallicity, broad Lya absorption lines, offset in velocity from the metal-line absorption, in order to reproduce the full Lya profile. (5) Metallicity in single-cloud weak Mg II systems are more than an order of magnitude larger than those in Damped Lya systems at z ~ 1.7. In fact, there appears to be a gradual decrease in metallicity with increasing N(HI), from these, the most metal-rich Lya forest clouds, to Lyman limit systems, to sub-DLAs, and finally to the DLAs.
We have used archival Chandra and XMM-Newton observations of quasars hosting intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an exploratory survey of their X-ray properties. Our sample consists of three intrinsic-NAL quasars and on e mini-BAL quasar, plus four quasars without intrinsic absorption lines for comparison. These were drawn in a systematic manner from an optical/UV-selected sample. The X-ray properties of intrinsic-NAL quasars are indistinguishable from those of normal quasars. We do not find any excess absorption in quasars with intrinsic NALs, with upper limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of our sample quasars by plotting the equivalent width and blueshift velocity of the intrinsic NALs and the X-ray spectral index against the optical-to-X-ray slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are included, the plots suggest that intrinsic-NAL quasars form an extension of the BAL sequences and tend to bridge the gap between BAL and normal quasars. Observations of larger samples of intrinsic-NAL quasars are needed to verify these conclusions. We also test two competing scenarios for the location of the NAL gas in an accretion-disk wind. Our results strongly support a location of the NAL gas at high latitudes above the disk, closer to the disk axis than the dense BAL wind. We detect excess X-ray absorption only in Q0014+8118, which does not host intrinsic NALs. The absorbing medium very likely corresponds to an intervening system at z=1.1, which also produces strong absorption lines in the rest-frame UV spectrum of this quasar. In the appendix we discuss the connection between UV and X-ray attenuation and its effect on alpha-ox.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا