ترغب بنشر مسار تعليمي؟ اضغط هنا

We produce the first low to mid frequency radio simulation that incorporates both traditional extragalactic radio sources as well as synchrotron cosmic web emission. The FIlaments & GAlactic RadiO (FIGARO) simulation includes ten unique SI{4x4}{degre e} fields, incorporating active galactic nucleii (AGNs), star forming galaxies (SFGs) and synchrotron cosmic web emission out to a redshift of $z = 0.8$ and over the frequency range 100-1400 MHz. To do this, the simulation brings together a recent $100^3$ Mpc$^3$ magneto-hydrodynamic simulation (Vazza et al., 2019), calibrated to match observed radio relic population statistics, alongside updated `T-RECS code for simulating extragalactic radio sources (Bonaldi et al., 2019). Uniquely, the AGNs and SFGs are populated and positioned in accordance with the underlying matter density of the cosmological simulation. In this way, the simulation provides an accurate understanding of the apparent morphology, angular scales, and brightness of the cosmic web as well as -- crucially -- the clustering properties of the cosmic web with respect to the embedded extragalactic radio population. We find that the synchrotron cosmic web does not closely trace the underlying mass distribution of the cosmic web, but is instead dominated by shocked shells of emission surrounding dark matter halos and resembles a large, undetected population of radio relics. We also show that, with accurate kernels, the cosmic web radio emission is clearly detectable by cross-correlation techniques and this signal is separable from the embedded extragalactic radio population. We offer the simulation as a public resource towards the development of techniques for detecting and measuring the synchrotron cosmic web.
We report on the discovery of a mysterious ultra-steep spectrum (USS) synchrotron source in the galaxy cluster Abell 2877. We have observed the source with the Murchison Widefield Array at five frequencies across 72-231 MHz and have found the source to exhibit strong spectral curvature over this range as well the steepest known spectra of a synchrotron cluster source, with a spectral index across the central three frequency bands of $alpha = -5.97^{+0.40}_{-0.48}$. Higher frequency radio observations, including a deep observation with the Australia Telescope Compact Array, fail to detect any of the extended diffuse emission. The source is approximately 370 kpc wide and bears an uncanny resemblance to a jellyfish with two peaks of emission and long tentacles descending south towards the cluster centre. Whilst the `USS Jellyfish defies easy classification, we here propose that the phenomenon is caused by the reacceleration and compression of multiple aged electron populations from historic active galactic nucleus (AGN) activity, so-called `radio phoenix, by an as yet undetected weak cluster-scale mechanism. The USS Jellyfish adds to a growing number of radio phoenix in cool-core clusters with unknown reacceleration mechanisms; as the first example of a polyphoenix, however, this implies the mechanism is on the scale of the cluster itself. Indeed, we show that in simulations, emission akin to the USS Jellyfish can be produced as a short-lived, transient phase in the evolution of multiple interacting AGN remnants when subject to weak external shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا