ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning (RL) algorithms can in principle acquire complex robotic skills by learning from large amounts of data in the real world, collected via trial and error. However, most RL algorithms use a carefully engineered setup in order to c ollect data, requiring human supervision and intervention to provide episodic resets. This is particularly evident in challenging robotics problems, such as dexterous manipulation. To make data collection scalable, such applications require reset-free algorithms that are able to learn autonomously, without explicit instrumentation or human intervention. Most prior work in this area handles single-task learning. However, we might also want robots that can perform large repertoires of skills. At first, this would appear to only make the problem harder. However, the key observation we make in this work is that an appropriately chosen multi-task RL setting actually alleviates the reset-free learning challenge, with minimal additional machinery required. In effect, solving a multi-task problem can directly solve the reset-free problem since different combinations of tasks can serve to perform resets for other tasks. By learning multiple tasks together and appropriately sequencing them, we can effectively learn all of the tasks together reset-free. This type of multi-task learning can effectively scale reset-free learning schemes to much more complex problems, as we demonstrate in our experiments. We propose a simple scheme for multi-task learning that tackles the reset-free learning problem, and show its effectiveness at learning to solve complex dexterous manipulation tasks in both hardware and simulation without any explicit resets. This work shows the ability to learn dexterous manipulation behaviors in the real world with RL without any human intervention.
GPT-3 can perform numerous tasks when provided a natural language prompt that contains a few training examples. We show that this type of few-shot learning can be unstable: the choice of prompt format, training examples, and even the order of the tra ining examples can cause accuracy to vary from near chance to near state-of-the-art. We demonstrate that this instability arises from the bias of language models towards predicting certain answers, e.g., those that are placed near the end of the prompt or are common in the pre-training data. To mitigate this, we first estimate the models bias towards each answer by asking for its prediction when given the training prompt and a content-free test input such as N/A. We then fit calibration parameters that cause the prediction for this input to be uniform across answers. On a diverse set of tasks, this contextual calibration procedure substantially improves GPT-3 and GPT-2s average accuracy (up to 30.0% absolute) and reduces variance across different choices of the prompt.
Meta-reinforcement learning algorithms can enable autonomous agents, such as robots, to quickly acquire new behaviors by leveraging prior experience in a set of related training tasks. However, the onerous data requirements of meta-training compounde d with the challenge of learning from sensory inputs such as images have made meta-RL challenging to apply to real robotic systems. Latent state models, which learn compact state representations from a sequence of observations, can accelerate representation learning from visual inputs. In this paper, we leverage the perspective of meta-learning as task inference to show that latent state models can emph{also} perform meta-learning given an appropriately defined observation space. Building on this insight, we develop meta-RL with latent dynamics (MELD), an algorithm for meta-RL from images that performs inference in a latent state model to quickly acquire new skills given observations and rewards. MELD outperforms prior meta-RL methods on several simulated image-based robotic control problems, and enables a real WidowX robotic arm to insert an Ethernet cable into new locations given a sparse task completion signal after only $8$ hours of real world meta-training. To our knowledge, MELD is the first meta-RL algorithm trained in a real-world robotic control setting from images.
Adversarial attacks alter NLP model predictions by perturbing test-time inputs. However, it is much less understood whether, and how, predictions can be manipulated with small, concealed changes to the training data. In this work, we develop a new da ta poisoning attack that allows an adversary to control model predictions whenever a desired trigger phrase is present in the input. For instance, we insert 50 poison examples into a sentiment models training set that causes the model to frequently predict Positive whenever the input contains James Bond. Crucially, we craft these poison examples using a gradient-based procedure so that they do not mention the trigger phrase. We also apply our poison attack to language modeling (Apple iPhone triggers negative generations) and machine translation (iced coffee mistranslated as hot coffee). We conclude by proposing three defenses that can mitigate our attack at some cost in prediction accuracy or extra human annotation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا