ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphons are analytic objects representing limits of convergent sequences of graphs. Lovasz and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many graph densities, has a simple structure. In particu lar, one of their conjectures would imply that every finitely forcible graphon has a weak $varepsilon$-regular partition with the number of parts bounded by a polynomial in $varepsilon^{-1}$. We construct a finitely forcible graphon $W$ such that the number of parts in any weak $varepsilon$-regular partition of $W$ is at least exponential in $varepsilon^{-2}/2^{5log^*varepsilon^{-2}}$. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.
We study the mixed Ramsey number maxR(n,K_m,K_r), defined as the maximum number of colours in an edge-colouring of the complete graph K_n, such that K_n has no monochromatic complete subgraph on m vertices and no rainbow complete subgraph on r vertic es. Improving an upper bound of Axenovich and Iverson, we show that maxR(n,K_m,K_4) <= n^{3/2}sqrt{2m} for all m >= 3. Further, we discuss a possible way to improve their lower bound on maxR(n,K_4,K_4) based on incidence graphs of finite projective planes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا