ترغب بنشر مسار تعليمي؟ اضغط هنا

We studied the feasibility of the measurement of Higgs pair creation at a Photon Linear Collider (PLC). From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum $gamma gamma$ collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/$c^2$. We found that large backgrounds such as $gamma gamma rightarrow W^+W^-, ZZ,$ and $bbar{b}bbar{b}$, can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of $sim 5 sigma$ by operating the PLC for 5 years.
A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cu re target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا