ترغب بنشر مسار تعليمي؟ اضغط هنا

In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of cons ecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.
We investigate logarithmically enhanced electromagnetic corrections of all angular observables in inclusive B -> X_s l^+ l^-. We present analytical results, which are supplemented by a dedicated Monte Carlo study on the treatment of collinear photons in order to determine the size of the electromagnetic logarithms. We then give the Standard Model predictions of all observables, considering all available NNLO QCD, NLO QED and power corrections, and investigate their sensitivity to New Physics. Since the structure of the double differential decay rate is modified in the presence of QED corrections, we also propose new observables which vanish if only QCD corrections are taken into account. Moreover, we study the experimental sensitivity to these new observables at Belle II.
We introduce and experimentally explore the concept of quantum non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quant um non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.
We study logarithmically enhanced electromagnetic corrections to the decay rate in the high dilepton invariant mass region as well as corrections to the forward backward asymmetry (FBA) of the inclusive rare decay $bar{B} to X_s ell^+ ell^-$. As expe cted, the relative effect of these corrections in the high dilepton mass region is around -8% for the muonic final state and therefore much larger than in the low dilepton mass region. We also present a complete phenomenological analysis, to improved NNLO accuracy, of the dilepton mass spectrum and the FBA integrated in the low dilepton mass region, including a new approach to the zero of the FBA. The latter represents one of the most precise predictions in flavour physics with a theoretical uncertainty of order 5%. We find $(q_0^2)_{mumu} = (3.50 pm 0.12) gev^2$. For the high dilepton invariant mass region, we have ${cal B}(bar Bto X_smumu)_{rm high} = (2.40^{+0.69}_{-0.62}) times 10^{-7}$. The dominant uncertainty is due to the $1/m_b$ corrections and can be significantly reduced in the future. For the low dilepton invariant mass region, we confirm previous results up to small corrections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا