ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed dynamical analysis of the orbital stability of the BD +20 2457 system, which features planets or brown dwarfs moving on relatively eccentric orbits. We find that the system exhibits strong dynamical instability on astronomically short timescales across a wide range of plausible orbital eccentricities, semi-major axes, and inclinations. If the system truly hosts massive planets or brown dwarfs, our results suggest that they must move on orbits significantly different to those proposed in the discovery work. If that is indeed the case, then it is likely that the best-fit orbital solutions for the proposed companions will change markedly as future observations are made. Such observations may result in the solution shifting to a more dynamically-stable regime, potentially one where stability is ensured by mutually resonant motion.
We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovi an-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated TTVs for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Keplers planetary candidates. Results of our study indicate that in general, the amplitudes of the TTVs fall within the detectable range of timing precision obtained from the Keplers long-cadence data, and depending on the parameters of the system, their magnitudes may become as large as a few hours. The probability of detection is higher for super-Earth Trojans with slightly eccentric orbits around short-period Jovian-type planets with masses slightly smaller than Jupiter. We present the details of our study and discuss the implications of its results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا