ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an ongoing R&D activity for machine-learning-assisted navigation through detectors to be used for track reconstruction. We investigate different approaches of training neural networks for surface prediction and compare their results. This work is carried out in the context of the ACTS tracking toolkit.
The SX-Aurora TSUBASA PCIe accelerator card is the newest model of NECs SX architecture family. Its multi-core vector processor features a vector length of 16 kbits and interfaces with up to 48 GB of HBM2 memory in the current models, available since 2018. The compute performance is up to 2.45 TFlop/s peak in double precision, and the memory throughput is up to 1.2 TB/s peak. New models with improved performance characteristics are announced for the near future. In this contribution we discuss key aspects of the SX-Aurora and describe how we enabled the architecture in the Grid Lattice QCD framework.
We numerically explore an alternative discretization of continuum $text{SU}(N_c)$ Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer for gauge group $text{U}(N_c)$. This discretization can be reformula ted such that the self-interactions of the gauge field are induced by a path integral over $N_b$ auxiliary bosonic fields, which couple linearly to the gauge field. In the first paper of the series we have shown that the theory reproduces continuum $text{SU}(N_c)$ Yang-Mills theory in $d=2$ dimensions if $N_b$ is larger than $N_c-frac{3}{4}$ and conjectured, following the argument of Budzcies and Zirnbauer, that this remains true for $d>2$. In the present paper, we test this conjecture by performing lattice simulations of the simplest nontrivial case, i.e., gauge group $text{SU}(2)$ in three dimensions. We show that observables computed in the induced theory, such as the static $qbar q$ potential and the deconfinement transition temperature, agree with the same observables computed from the ordinary plaquette action up to lattice artifacts. We also find that the bound for $N_b$ can be relaxed to $N_c-frac{5}{4}$ as conjectured in our earlier paper. Studies of how the new discretization can be used to change the order of integration in the path integral to arrive at dual formulations of QCD are left for future work.
We describe our experience porting the Regensburg implementation of the DD-$alpha$AMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knight s Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.
In the $epsilon$-domain of QCD we have obtained exact analytical expressions for the eigenvalue density of the Dirac operator at fixed $theta e 0$ for both one and two flavors. These results made it possible to explain how the different contribution s to the spectral density conspire to give a chiral condensate at fixed $theta$ that does not change sign when the quark mass (or one of the quark masses for two flavors) crosses the imaginary axis, while the chiral condensate at fixed topological charge does change sign. From QCD at nonzero density we have learnt that the discontinuity of the chiral condensate may move to a different location when the spectral density increases exponentially with the volume with oscillations on the order of the inverse volume. This is indeed what happens when the product of the quark masses becomes negative, but the situation is more subtle in this case: the contribution of the quenched part of the spectral density diverges in the thermodynamic limit at nonzero $theta$, but this divergence is canceled exactly by the contribution from the zero modes. We conclude that the zero modes are essential for the continuity of the chiral condensate and that their contribution has to be perfectly balanced against the contribution from the nonzero modes. Lattice simulations at nonzero $theta$-angle can only be trusted if this is indeed the case.
We explore an alternative discretization of continuum SU(N_c) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path i ntegral over N_b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N_b can be as small as N_c. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N_c) to SU(N_c), (ii) derive refined bounds on N_b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
In a sector of fixed topological charge, the chiral condensate has a discontinuity given by the Banks-Casher formula also in the case of one-flavor QCD. However, at fixed theta-angle, the chiral condensate remains constant when the quark mass crosses zero. To reconcile these contradictory observations, we have evaluated the spectral density of one-flavor QCD at theta=0. For negative quark mass, it becomes a strongly oscillating function with a period that scales as the inverse space-time volume and an amplitude that increases exponentially with the space-time volume. As we have learned from QCD at nonzero chemical potential, if this is the case, an alternative to the Banks-Casher formula applies, and as we will demonstrate in this talk, for one-flavor QCD this results in a continuous chiral condensate. A special role is played by the topological zero modes which have to be taken into account exactly in order to get a finite chiral condensate in the thermodynamic limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا