ترغب بنشر مسار تعليمي؟ اضغط هنا

Given the complexity of typical data science projects and the associated demand for human expertise, automation has the potential to transform the data science process. Key insights: * Automation in data science aims to facilitate and transform t he work of data scientists, not to replace them. * Important parts of data science are already being automated, especially in the modeling stages, where techniques such as automated machine learning (AutoML) are gaining traction. * Other aspects are harder to automate, not only because of technological challenges, but because open-ended and context-dependent tasks require human interaction.
Learning and reasoning over graphs is increasingly done by means of probabilistic models, e.g. exponential random graph models, graph embedding models, and graph neural networks. When graphs are modeling relations between people, however, they will i nevitably reflect biases, prejudices, and other forms of inequity and inequality. An important challenge is thus to design accurate graph modeling approaches while guaranteeing fairness according to the specific notion of fairness that the problem requires. Yet, past work on the topic remains scarce, is limited to debiasing specific graph modeling methods, and often aims to ensure fairness in an indirect manner. We propose a generic approach applicable to most probabilistic graph modeling approaches. Specifically, we first define the class of fair graph models corresponding to a chosen set of fairness criteria. Given this, we propose a fairness regularizer defined as the KL-divergence between the graph model and its I-projection onto the set of fair models. We demonstrate that using this fairness regularizer in combination with existing graph modeling approaches efficiently trades-off fairness with accuracy, whereas the state-of-the-art models can only make this trade-off for the fairness criterion that they were specifically designed for.
204 - Maarten Buyl , Tijl De Bie 2020
As machine learning algorithms are increasingly deployed for high-impact automated decision making, ethical and increasingly also legal standards demand that they treat all individuals fairly, without discrimination based on their age, gender, race o r other sensitive traits. In recent years much progress has been made on ensuring fairness and reducing bias in standard machine learning settings. Yet, for network embedding, with applications in vulnerable domains ranging from social network analysis to recommender systems, current options remain limited both in number and performance. We thus propose DeBayes: a conceptually elegant Bayesian method that is capable of learning debiased embeddings by using a biased prior. Our experiments show that these representations can then be used to perform link prediction that is significantly more fair in terms of popular metrics such as demographic parity and equalized opportunity.
Network embedding methods map a networks nodes to vectors in an embedding space, in such a way that these representations are useful for estimating some notion of similarity or proximity between pairs of nodes in the network. The quality of these nod e representations is then showcased through results of downstream prediction tasks. Commonly used benchmark tasks such as link prediction, however, present complex evaluation pipelines and an abundance of design choices. This, together with a lack of standardized evaluation setups can obscure the real progress in the field. In this paper, we aim to shed light on the state-of-the-art of network embedding methods for link prediction and show, using a consistent evaluation pipeline, that only thin progress has been made over the last years. The newly conducted benchmark that we present here, including 17 embedding methods, also shows that many approaches are outperformed even by simple heuristics. Finally, we argue that standardized evaluation tools can repair this situation and boost future progress in this field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا