ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Ignoring long-term temporal information, most existing approaches are not able to properly handle multi-objec t tracking challenges such as occlusion. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics/post-processing. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, reaching new state-of-the-art results on multiple MOT metrics for two popular multi-object tracking benchmarks. Our code will be made publicly available.
We present an efficient ab initio dynamical mean-field theory (DMFT) implementation for quantitative simulations in solids. Our DMFT scheme employs ab initio Hamiltonians defined for impurities comprising the full unit cell or a supercell of atoms an d for realistic quantum chemical basis sets. We avoid double counting errors by using Hartree-Fock as the low-level theory. Intrinsic and projected atomic orbitals (IAO+PAO) are chosen as the local embedding basis, facilitating numerical bath truncation. Using an efficient integral transformation and coupled-cluster Greens function (CCGF) impurity solvers, we are able to handle embedded impurity problems with several hundred orbitals. We apply our ab initio DMFT approach to study a hexagonal boron nitride monolayer, crystalline silicon, and nickel oxide in the antiferromagnetic phase, with up to 104 and 78 impurity orbitals in spin-restricted and unrestricted cluster DMFT calculations and over 100 bath orbitals. We show that our scheme produces accurate spectral functions compared to both benchmark periodic coupled-cluster computations and experimental spectra.
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for th e density of states and self-energies of cluster impurity problems in the one- and two-dimensional Hubbard models. Comparison to exact diagonalization shows that CCSD produces accurate density of states and self-energies at a variety of values of $U/t$ and filling fractions. However, the low cost allows for the use of many bath sites, which we define by a discretization of the hybridization directly on the real frequency axis. We observe convergence of dynamical quantities using approximately 30 bath sites per impurity site, with our largest 4-site cluster DMFT calculation using 120 bath sites. We suggest coupled cluster impurity solvers will be attractive in ab initio formulations of dynamical mean-field theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا