ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the entanglement generated by a weak cross-Kerr nonlinearity between two initial coherent states, one of which has an amplitude close to the single-photon level, while the other one is macroscopic. We show that strong micro-macro entanglemen t is possible for weak phase shifts by choosing the amplitude of the macroscopic beam sufficiently large. We analyze the effects of loss and discuss possible experimental demonstrations of the micro-macro entanglement based on homodyne tomography and on a new entanglement witness.
Heterogeneity of both the source and target objects is taken into account in a network-based algorithm for the directional resource transformation between objects. Based on a biased heat conduction recommendation method (BHC) which considers the hete rogeneity of the target object, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the source object degree as the weight of diffusion. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present a better recommendation in both the accuracy and personalization than two excellent algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC even elevates the recommendation accuracy on cold objects, referring to the so-called cold start problem, for effectively relieving the recommendation bias on objects with different level of popularity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا