ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the results of 6 nights of Canada-France-Hawaii Telescope spectropolarimetric ESPaDOnS observations of the He-strong, magnetic B1 type star ALS 3694. The longitudinal magnetic field is approximately 2 kG in all 6 observations, showing essen tially no variation between nights. The H$alpha$ line displays variable emission on all nights, peaking at high velocities ($sim 3 vsin{i}$). Given the presence of a strong ($B_{rm d}>$6 kG) magnetic field, and the similarity of the emission profile to that of other magnetic B-type stars, we interpret the emission as a consequence of a centrifugal magnetosphere.
The early B supergiant LMC star BI 108 is photometrically variable with a unique light curve; two strong periods are present in an almost precise 3:2 resonance. We collected spectroscopic data at VLT/UVES, sampling the supercycle of 10.733 days in te n epochs. We find spectral signatures for a SB2 system consisting of two massive B1 supergiants orbiting at the orbital period of 5.366 days. The shorter periodicity resembles the light curve of an eclipsing binary with periodicity 3.578 days that is not detected in the data. We discuss possible causes for the short periodicity and conclude that the quadruple system is the more plausible hypothesis.
Among the emission-line stars, the classical Be stars known for their extreme properties are remarkable. The Be stars are B-type main sequence stars that have displayed at least once in their life emission lines in their spectrum. Beyond this phenome nological approach some progresses were made on the understanding of this class of stars. With high-technology techniques (interferometry, adaptive optics, multi-objects spectroscopy, spectropolarimetry, high-resolution photometry, etc) from different instruments and space mission such as the VLTI, CHARA, FLAMES, ESPADONS-NARVAL, COROT, MOST, SPITZER, etc, some discoveries were performed allowing to constrain the modelling of the Be stars stellar evolution but also their circumstellar decretion disks. In particular, the confrontation between theory and observations about the effects of the stellar formation and evolution on the main sequence, the metallicity, the magnetic fields, the stellar pulsations, the rotational velocity, and the binarity (including the X-rays binaries) on the Be phenomenon appearance is discussed. The disks observations and the efforts made on their modelling is mentioned. As the life of a star does not finish at the end of the main sequence, we also mention their stellar evolution post main sequence including the gamma-ray bursts. Finally, the different new results and remaining questions about the main physical properties of the Be stars are summarized and possible ways of investigations proposed. The recent and future facilities (XSHOOTER, ALMA, E-ELT, TMT, GMT, JWST, GAIA, etc) and their instruments that may help to improve the knowledge of Be stars are also briefly introduced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا