ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold quasineutral plasmas generated in the laboratory are generically inhomogeneous and ex- hibit small charge imbalances. As will be demonstrated, via a hydrodynamic theory as well as microscopic simulations, the latter lead to efficient energy absorption at the plasma boundary. This proposed edge-mode is shown to provide a unified explanation for observed absorption spectra measured in different experiments. Understanding the response of the electronic plasma compo- nent to weak external driving is essential since it grants experimental access to the density and temperature of ultracold plasmas.
We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various e xperimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا