ترغب بنشر مسار تعليمي؟ اضغط هنا

60 - Thomas Palberg 2014
Colloidal model systems allow studying crystallization kinetics under fairly ideal conditions with rather well characterized pair interactions and minimized external influences. In complementary approaches therefore experiment, analytic theory and si mulation have been employed to study colloidal solidification in great detail. These studies were based on advanced optical methods, careful system characterization and sophisticated numerical methods. Both the effects of the type, strength and range of the pair-interaction between the colloidal particles and those of the colloid-specific polydispersity were addressed in a quantitative way. Key parameters of crystallization were derived and compared to those of metal systems. These systematic investigations significantly contributed to an enhanced understanding of the crystallization processes in general. Further, new fundamental questions have arisen and (partially) been solved over the last decade including e.g. a two step nucleation mechanism in homogeneous nucleation, choice of the crystallization pathway or the subtle interplay of boundary conditions in heterogeneous nucleation. On the other side, via the application of both gradients and external fields the competition between different nucleation and growth modes can be controlled and the resulting micro-structure be influenced. The present review attempts an account of the interesting developments occurred since the turn of the millennium and an identification of important novel trends with particular focus on experimental aspects.
The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecu lar weight microions, and colloidal macroions with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of nonlinear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that is saturated with carbon dioxide under standard atmosphere. The only input required for our theoretical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high numerical efficiency.
We report on a novel and flexible experiment to investigate the non-equilibrium melting behaviour of model crystals made from charged colloidal spheres. In a slit geometry polycrystalline material formed in a low salt region is driven by hydrostatic pressure up an evolving gradient in salt concentration and melts at large salt concentration. Depending on particle and initial salt concentration, driving velocity and the local salt concentration complex morphologic evolution is observed. Crystal-melt interface positions and the melting velocity are obtained quantitatively from time resolved Bragg- and polarization microscopic measurements. A simple theoretical model predicts the interface to first advance, then for balanced drift and melting velocities to become stationary at a salt concentration larger than the equilibrium melting concentration. It also describes the relaxation of the interface to its equilibrium position in a stationary gradient after stopping the drive in different manners. We further discuss the influence of the gradient strength on the resulting interface morphology and a shear induced morphologic transition from polycrystalline to oriented single crystalline material before melting.
373 - Thomas Palberg 2008
In soft matter structure couples to flow and vice versa. Complementary to structural investigations, we here are interested in the determination of particle velocities of charged colloidal suspensions of different structure under flow. In a combined effort of theory and experiment we determine the Fourier transform of the super-heterodyne field auto-correlation function (power spectrum) which in frequency space is found to be well separated from homodyne contributions and low frequency noise. Under certain conditions the power spectrum is dominated by incoherently scattered light, originating from the unavoidable size polydispersity of colloidal particles. A simple approximate form for the low-wavenumber self-intermediate scattering function is proposed, reminiscent to the case of non-interacting particles. We experimentally scrutinize the range of applicability of these simplified calculations on employing a parabolic electro-osmotic flow profile. Both for non-interacting and strongly interacting fluid particle systems, the spectra are well described as diffusion-broadened velocity distributions comprising an osmotic flow-averaged superposition of Lorentzians at distinct locations. We discuss the performance and scope of this approach with particular focus on moderately strong interactions and on multiphase flow. In addition, we point to some remaining theoretical challenges in connection to the observed linear increase of the effective diffusion constant and the integrated spectral power with increasing electric field strength.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا