ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent low-temperature scanning-tunneling microscopy experiments [T. Kumagai et al., Phys. Rev. B 79, 035423 (2009)] observed the vibrationally induced flip motion of a hydroxyl dimer (OD)2 on Cu(110). We propose a model to describe two-level fluctua tions and current-voltage characteristics of nanoscale systems which undergo vibrationally induced switching. The parameters of the model are based on comprehensive density-functional calculations of the systems vibrational properties. For the dimer (OD)2 the calculated population of the high and low conductance states, the I-V, dI/dV, and d2I/dV2 curves are in good agreement with the experimental results and underlines the different roles played by the free and shared OD stretch modes of the dimer.
We study pentanedithiol molecular junctions formed by means of the break-junction technique with a scanning tunneling microscope at low temperatures. Using inelastic electron tunneling spectroscopy and first-principles calculations, the response of t he junction to elastic deformation is examined. We show that this procedure makes a detailed characterization of the molecular junction possible. In particular, our results indicate that tunneling takes place through just a single molecule.
The charge flow from a single C60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contac t conductance of a single molecule between two Cu electrodes can vary up to a factor of three depending on electrode geometry, the conductance of the C60-C60 contact is consistently lower by two orders of magnitude. First-principles transport calculations reproduce the experimental results, allow a determination of the actual C60-C60 distances, and identify the essential role of the intermolecular link in bi- and trimolecular chains.
A dynamical method for inelastic transport simulations in nanostructures is compared with a steady-state method based on non-equilibrium Greens functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling li mit, effective self-energies analogous to those in the Born Approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations, where differences begin to emerge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا