ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally demonstrate that the Mollow triplet sidebands of a quantum dot strongly coupled to a cavity exhibit anomalous power induced broadening and enhanced emission when one sideband is tuned over the cavity frequency. We observe a nonlinea r increase of the sideband linewidth with excitation power when the Rabi frequency exceeds the detuning between the quantum dot and the cavity, consistent with a recent theoretical model that accounts for acoustic phonon-induced processes between the exciton and the cavity. In addition, the sideband tuned to the cavity shows strong resonant emission enhancement.
Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic q uantum logic gate, where the quantum state of a solid-state quantum bit (qubit) conditionally controls the state of a photonic qubit. These gates are crucial for development of robust quantum networks, non-destructive quantum measurements, and strong photon-photon interactions. Here we experimentally realize a quantum logic gate between an optical photon and a solid-state qubit. The qubit is composed of a quantum dot (QD) strongly coupled to a nano-cavity, which acts as a coherently controllable qubit system that conditionally flips the polarization of a photon on picosecond timescales, implementing a controlled-NOT (cNOT) gate. Our results represent an important step towards solid-state quantum networks and provide a versatile approach for probing QD-photon interactions on ultra-fast timescales.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا