ترغب بنشر مسار تعليمي؟ اضغط هنا

The full LINC-NIRVANA instrument will be one of the most complex ground-based astronomical systems ever built. It will consist of multiple subsystems, including two multi-conjugate ground layer AO systems (MCAO) that drive the LBT adaptive secondarie s, two mid-high layer AO systems with their own Xynetics 349 actuator DMs , a fringe tracker, a beam combiner, and the NIR science camera. In order to mitigate risk, we take a modular approach to instrument testing and commissioning by decoupling these subsystems individually. The first subsystem tested on-sky will be one of the ground-layer AO systems, part of a test-bed known as the Pathfinder. The Pathfinder consists of a 12-star pyramid wavefront sensor (PWFS) that drives one of the LBTs adaptive secondaries, a support structure known as The Foot, and the infrared test camera (IRTC), which is used for acquisition and alignment. The 12 natural guide stars are acquired by moveable arms called star enlargers, each of which contains its own optical path. The Pathfinder was shipped from MPIA in Heidelberg, Germany to the LBT mountain lab on Mt. Graham, Arizona in February 2013. The system was unpacked, assembled in the LBT clean room, and internally optically aligned. We present the results of our system tests, including star enlarger alignment and system alignment. We also present our immediate plans for on-sky closed loop tests on the LBT scheduled for late Fall. Because plans for all ELTs call for ground layer correction, the Pathfinder provides valuable preliminary information not only for the full LINC-NIRVANA system, but also for future advanced MCAO systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا