ترغب بنشر مسار تعليمي؟ اضغط هنا

We study general aspects of the reductive dual pair correspondence, also known as Howe duality. We make an explicit and systematic treatment, where we first derive the oscillator realizations of all irreducible dual pairs: $(GL(M,mathbb R), GL(N,math bb R))$, $(GL(M,mathbb C), GL(N,mathbb C))$, $(U^*(2M), U^*(2N))$, $(U(M_+,M_-), U(N_+,N_-))$, $(O(N_+,N_-),Sp(2M,mathbb R))$, $(O(N,mathbb C), Sp(2M,mathbb C))$ and $(O^*(2N), Sp(M_+,M_-))$. Then, we decompose the Fock space into irreducible representations of each group in the dual pairs for the cases where one member of the pair is compact as well as the first non-trivial cases of where it is non-compact. We discuss the relevance of these representations in several physical applications throughout this analysis. In particular, we discuss peculiarities of their branching properties. Finally, closed-form expressions relating all Casimir operators of two groups in a pair are established.
92 - Thomas Basile , Euihun Joung , 2019
The section condition of Double Field Theory has been argued to mean that doubled coordinates are gauged: a gauge orbit represents a single physical point. In this note, we consider a doubled and at the same time gauged particle action, and show that its BRST formulation including Faddeev--Popov ghosts matches with the graded Poisson geometry that has been recently used to describe the symmetries of Double Field Theory. Besides, by requiring target spacetime diffeomorphisms at the quantum level, we derive quantum corrections to the classical action involving dilaton, which might be comparable with the Fradkin--Tseytlin term on string worldsheet.
The linearized spectrum and the algebra of global symmetries of conformal higher-spin gravity decompose into infinitely many representations of the conformal algebra. Their characters involve divergent sums over spins. We propose a suitable regulariz ation adapted to their evaluation and observe that their characters are actually equal. This result holds in the case of type-A and type-B (and their higher-depth generalizations) theories and confirms previous observations on a remarkable rearrangement of dynamical degrees of freedom in conformal higher-spin gravity after regularization.
We compute the one-loop free energies of the type-A$_ell$ and type-B$_ell$ higher-spin gravities in $(d+1)$-dimensional anti-de Sitter (AdS$_{d+1}$) spacetime. For large $d$ and $ell$, these theories have a complicated field content, and hence it is difficult to compute their zeta functions using the usual methods. Applying the character integral representation of zeta function developed in the companion paper arXiv:1805.05646 to these theories, we show how the computation of their zeta function can be shortened considerably. We find that the results previously obtained for the massless theories ($ell=1$) generalize to their partially-massless counterparts (arbitrary $ell$) in arbitrary dimensions.
The zeta function of an arbitrary field in $(d+1)$-dimensional anti-de Sitter (AdS) spacetime is expressed as an integral transform of the corresponding $so(2,d)$ representation character, thereby extending the results of arXiv:1603.05387 for AdS$_4$ and AdS$_5$ to arbitrary dimensions. The integration in the variables associated with the $so(d)$ part of the character can be recast into a more explicit form using derivatives. The explicit derivative expressions are presented for AdS$_{d+1}$ with $d=2,3,4,5,6$.
We explore the relation between the singleton and adjoint modules of higher-spin algebras via so(2,d) characters. In order to relate the tensor product of the singleton and its dual to the adjoint module, we consider a heuristic formula involving sym metrization over the variables of the character. We show that our formula reproduces correctly the adjoint-module character for type-A (and its high-order extensions) and type-B higher-spin gravity theories in any dimension. Implications and subtleties of this symmetrization prescription in other models are discussed.
89 - Thomas Basile 2017
We study a class of non-unitary so(2,d) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class o f so(2,d) modules obeys of natural generalisation of a couple of defining properties of unitary higher-spin singletons. In particular, we find out that upon restriction to the subalgebra so(2,d-1), these representations branch onto a sum of modules describing partially massless fields of various depths. Finally, their tensor product is worked out in the particular case of d=4, where the appearance of a variety of mixed-symmetry partially massless fields in this decomposition is observed.
A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s-1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equati on for a symmetric, conformal spin-s tensor gauge field in 3D is the flatness condition for the sum of the GL(5) spin-s and background connections. This presentation of the equations allows to reformulate in a compact way the cohomological problem studied in 1511.07389, featuring the spin-s Schouten tensor. We provide full computational details for spin 3 and 4 and present the general spin-s case in a compact way.
We rederive the characters of all unitary irreducible representations of the $(d+1)$-dimensional de Sitter spacetime isometry algebra $mathfrak{so}(1,d+1)$, and propose a dictionary between those representations and massive or (partially) massless fi elds on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We comment on a possible equivalent of the scalar singleton for the de Sitter (dS) spacetime.
We derive and spell out the structure constants of the $mathbb{Z}_2$-graded algebra $mathfrak{shs}[lambda],$ by using deformed-oscillators techniques in $Aq(2; u),$, the universal enveloping algebra of the Wigner-deformed Heisenberg algebra in 2 dime nsions. The use of Weyl ordering of the deformed oscillators is made throughout the paper, via the symbols of the operators and the corresponding associative, non-commutative star product. The deformed oscillator construction was used by Vasiliev in order to construct the higher spin algebras in three spacetime dimensions. We derive an expression for the structure constants of $mathfrak{shs}[lambda],$ and show that they must obey a recurrence relation as a consequence of the associativity of the star product. We solve this condition and show that the $mathfrak{hs}[lambda],$ structure constants are given by those postulated by Pope, Romans and Shen for the Lone Star product.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا