ترغب بنشر مسار تعليمي؟ اضغط هنا

Aerial autonomous machines (Drones) has a plethora of promising applications and use cases. While the popularity of these autonomous machines continues to grow, there are many challenges, such as endurance and agility, that could hinder the practical deployment of these machines. The closed-loop control frequency must be high to achieve high agility. However, given the resource-constrained nature of the aerial robot, achieving high control loop frequency is hugely challenging and requires careful co-design of algorithm and onboard computer. Such an effort requires infrastructures that bridge various domains, namely robotics, machine learning, and system architecture design. To that end, we present AutoSoC, a framework for co-designing algorithms as well as hardware accelerator systems for end-to-end learning-based aerial autonomous machines. We demonstrate the efficacy of the framework by training an obstacle avoidance algorithm for aerial robots to navigate in a densely cluttered environment. For the best performing algorithm, our framework generates various accelerator design candidates with varying performance, area, and power consumption. The framework also runs the ASIC flow of place and route and generates a layout of the floor-planed accelerator, which can be used to tape-out the final hardware chip.
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks. However, their hefty computational and memory demands make them challenging to deploy to resource-cons trained edge platforms with strict latency requirements. We present EdgeBERT, an in-depth algorithm-hardware co-design for latency-aware energy optimization for multi-task NLP. EdgeBERT employs entropy-based early exit predication in order to perform dynamic voltage-frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while adhering to a prescribed target latency. Computation and memory footprint overheads are further alleviated by employing a calibrated combination of adaptive attention span, selective network pruning, and floating-point quantization. Furthermore, in order to maximize the synergistic benefits of these algorithms in always-on and intermediate edge computing settings, we specialize a 12nm scalable hardware accelerator system, integrating a fast-switching low-dropout voltage regulator (LDO), an all-digital phase-locked loop (ADPLL), as well as, high-density embedded non-volatile memories (eNVMs) wherein the sparse floating-point bit encodings of the shared multi-task parameters are carefully stored. Altogether, latency-aware multi-task NLP inference acceleration on the EdgeBERT hardware system generates up to 7x, 2.5x, and 53x lower energy compared to the conventional inference without early stopping, the latency-unbounded early exit approach, and CUDA adaptations on an Nvidia Jetson Tegra X2 mobile GPU, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا