ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary neutron-star systems represent one of the most promising sources of gravitational waves. In order to be able to extract important information, notably about the equation of state of matter at nuclear density, it is necessary to have in hands a n accurate analytical model of the expected waveforms. Following our recent work, we here analyze more in detail two general-relativistic simulations spanning about 20 gravitational-wave cycles of the inspiral of equal-mass binary neutron stars with different compactnesses, and compare them with a tidal extension of the effective-one-body (EOB) analytical model. The latter tidally extended EOB model is analytically complete up to the 1.5 post-Newtonian level, and contains an analytically undetermined parameter representing a higher-order amplification of tidal effects. We find that, by calibrating this single parameter, the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, analytical models (either EOB, or Taylor-T4) that do not incorporate such a higher-order amplification of tidal effects, build a dephasing with respect to the numerical waveforms of several radians.
We continue the study of the one-dimensional E10 coset model (massless spinning particle motion on E10/K(E10) whose dynamics at low levels is known to coincide with the equations of motion of maximal supergravity theories in appropriate truncations. We show that the coset dynamics (truncated at levels less or equal to three) can be consistently restricted by requiring the vanishing of a set of constraints which are in one-to-one correspondence with the canonical constraints of supergravity. Hence, the resulting constrained sigma-model dynamics captures the full (constrained) supergravity dynamics in this truncation. Remarkably, the bosonic constraints are found to be expressible in a Sugawara-like (current x current) form in terms of the conserved E10 Noether current, and transform covariantly under an upper parabolic subgroup E10+ of E10. We discuss the possible implications of this result, and in particular exhibit a tantalising link with the usual affine Sugawara construction in the truncation of E10 to its affine subgroup E9.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا