ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the problem of deriving a specification for a third-party component, based on the specification of the system and the environment in which the component is supposed to reside. Particularly, we are interested in using component specifications for conformance testing of black-box components, using the theory of input-output conformance (ioco) testing. We propose and prove sufficient criteria for decompositionality, i.e., that components conforming to the derived specification will always compose to produce a correct system with respect to the system specification. We also study the criteria for strong decomposability, by which we can ensure that only those components conforming to the derived specification can lead to a correct system.
The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural asymptotic result of an evolution in which low-density expanding void regions dictate the spatial organization of the Megaparsec Universe, while matter assembles in high-density filamentary and wall-like interstices between the voids. We describe the results of ongoing investigations of a variety of aspects of cosmologically relevant spatial distributions and statistics within the framework of Voronoi tessellations. Particularly enticing is the finding of a profound scaling of both clustering strength and clustering extent for the distribution of tessellation nodes, suggestive for the clustering properties of galaxy clusters. Cellular patterns may be the source of an intrinsic ``geometrically biased clustering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا