ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/$c^2$ $sim$ 200-GeV/$c^2$) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent (SD) WIMP-proton cross section for WIMP masses below 200 GeV/$c^2$ (at 10 GeV/$c^2$, 1.49$times 10^{-39}$ cm$^2$ for $chichirightarrow b bar{b}$ and 1.31$times 10^{-40}$ cm$^2$ for $chichirightarrowtau^+tau^-$ annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent (SI) coupling in the few-GeV/$c^2$ mass range.
187 - Roger Wendell 2014
Recent results from a 282 kiloton-year exposure of the Super-Kamiokande detector to atmospheric neutrinos are presented. The data when fit both by themselves and in conjunction with constraints from the T2K and reactor neutrino experiments show a wea k, though insignificant, preference for the normal mass hierarchy at the level of ~1 sigma. Searches for evidence of oscillations into a sterile neutrino have resulted in limits on the parameters governing their mixing, |U_mu4}|^2 <0.041 and |U_tau4|^2 < 0.18 at 90% C.L. A similar search for an indication of Lorentz-invariance violating oscillations has yielded limits three to seven orders of magnitude more stringent than existing measurements. Additionally, analyses searching for an excess of neutrinos in the atmospheric data produced from the annihilation of dark matter particles in the galaxy and sun have placed tight limits on the cross sections governing their annihilation and scattering.
A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the non- perturbative Standard Model Extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the $emu$, $mutau$, and $etau$ sectors, improving the existing limits by up to seven orders of magnitude and setting limits for the first time in the neutrino $mutau$ sector of the SME.
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $sin^2(Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{mu4}|^2$ to less than 0.041 and $|U_{tau4}|^2$ to less than 0.18 for $Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.
We have searched for proton decay via $p rightarrow u K^{+}$ using Super-Kamiokande data from April 1996 to February 2013, 260 kiloton$cdot$year exposure in total. No evidence for this proton decay mode is found. A lower limit of the proton lifetime is set to $5.9 times 10^{33}$ years at 90% confidence level.
We have searched for proton into muon plus neutral kaon using data from a 91.7 kiloton-year exposure of Super-Kamiokande-I, a 49.2 kiloton-year exposure of Super-Kamiokande-II, and a 31.9 kiloton-year exposure of Super-Kamiokande-III. The number of c andidate events in the data was consistent with the atmospheric neutrino background expectation and no evidence for proton decay in this mode was found. We set a partial lifetime lower limit of 1.6x10^33 years at the 90% confidence level.
GUT monopoles captured by the Suns gravitation are expected to catalyze proton decays via the Callan-Rubakov process. In this scenario, protons, which initially decay into pions, will ultimately produce u_{e}, u_{mu} and bar{ u}_{mu}. After undergo ing neutrino oscillation, all neutrino species appear when they arrive at the Earth, and can be detected by a 50,000 metric ton water Cherenkov detector, Super-Kamiokande (SK). A search for low energy neutrinos in the electron total energy range from 19 to 55 MeV was carried out with SK and gives a monopole flux limit of F_M(sigma_0/1 mb) < 6.3 times 10^{-24} (beta_M/10^{-3})^2 cm^{-2} s^{-1} sr^{-1} at 90% C.L., where beta_M is the monopole velocity in units of the speed of light and sigma_0 is the catalysis cross section at beta_M=1. The obtained limit is more than eight orders of magnitude more stringent than the current best cosmic-ray supermassive monopole flux limit, F_M < 1 times 10^{-15} cm^{-2} s^{-1} sr^{-1} for beta_M < 10^{-3} and also two orders of magnitude lower than the result of the Kamiokande experiment, which used a similar detection method.
A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0 nu_e cm^-2 s^-1 > 16 MeV total positron energy (17.3 MeV E_nu).
We present the result of an indirect search for high energy neutrinos from WIMP annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Datasets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an exce ss of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upward-going muon flux induced by WIMPs of 100 GeV/c$^2$ were 6.4$times10^{-15}$ cm$^{-2}$ sec$^{-1}$ and 4.0$times10^{-15}$ cm$^{-2}$ sec$^{-1}$ for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5$times10^{-39}$ cm$^{-2}$ and 2.7$times10^{-40}$ cm$^{-2}$ for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا