ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. $^{12}$CO ($J$ =3-2, 1-0) and $^{13}$CO ($J$=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities ($n({rm H}_2)$) of the clumps are distributed from low to high density ($10^3$-$10^5$ cm$^{-3}$) and their kinetic temperatures ($T_{rm kin}$) are typically high (greater than $50$ K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of H$alpha$, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density HI envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high $n({rm H}_2)$ and $T_{rm kin}$, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.
We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3+-8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by Az TEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, KS). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.4 arcsec from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2)x10^14 {mu}^-1 L_sun and a star formation rate of 5600-39, 000 {mu}^-1 M_sun yr^-1, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.
In order to precisely determine temperature and density of molecular gas in the Large Magellanic Cloud, we made observations of optically thin $^{13}$CO($J=3-2$) transition by using the ASTE 10m telescope toward 9 peaks where $^{12}$CO($J=3-2$) clump s were previously detected with the same telescope. The molecular clumps include those in giant molecular cloud (GMC) Types I (with no signs of massive star formation), II (with HII regions only), and III (with HII regions and young star clusters). We detected $^{13}$CO($J=3-2$) emission toward all the peaks and found that their intensities are 3 -- 12 times lower than those of $^{12}$CO($J=3-2$). We determined the intensity ratios of $^{12}$CO($J=3-2$) to $^{13}$CO($J=3-2$), $R^{12/13}_{3-2}$, and $^{13}$CO($J=3-2$) to $^{13}$CO($J=1-0$), $R^{13}_{3-2/1-0}$, at 45$arcsec$ resolution. These ratios were used for radiative transfer calculations in order to estimate temperature and density of the clumps. The parameters of these clumps range kinetic temperature $Tmathrm{_{kin}}$ = 15 -- 200 K, and molecular hydrogen gas density $n(mathrm{H_2})$ = 8$times 10^2$ -- 7$times 10^3$ cm$^{-3}$. We confirmed that the higher density clumps show higher kinetic temperature and that the lower density clumps lower kinetic temperature at a better accuracy than in the previous work. The kinetic temperature and density increase generally from a Type I GMC to a Type III GMC. We interpret that this difference reflects an evolutionary trend of star formation in molecular clumps. The $R^{13}_{3-2/1-0}$ and kinetic temperature of the clumps are well correlated with H$alpha$ flux, suggesting that the heating of molecular gas $n(mathrm{H_2})$ = $10^3$ -- $10^4$ cm$^{-3}$ can be explained by stellar FUV photons.
The second survey of the molecular clouds in 12CO (J = 1-0) was carried out in the Large Magellanic Cloud by NANTEN. The sensitivity of this survey is twice as high as that of the previous NANTEN survey, leading to a detection of molecular clouds wit h M_CO > 2 x 10^4 M_sun. We identified 272 molecular clouds, 230 of which are detected at three or more observed positions. We derived the physical properties, such as size, line width, virial mass, of the 164 GMCs which have an extent more than the beam size of NANTEN in both the major and minor axes. The CO luminosity and virial mass of the clouds show a good correlation of M_VIR propto L_CO^{1.1 +- 0.1} with a Spearman rank correlation of 0.8 suggesting that the clouds are in nearly virial equilibrium. Assuming the clouds are in virial equilibrium, we derived an X_CO-factor to be ~ 7 x 10^20 cm^-2 (K km s^-1)^-1. The mass spectrum of the clouds is fitted well by a power law of N_cloud(>M_CO) proportional to M_CO^{-0.75 +- 0.06} above the completeness limit of 5 x 10^4 M_sun. The slope of the mass spectrum becomes steeper if we fit only the massive clouds; e.g., N_cloud (>M_CO) is proportional to M_CO^{-1.2 +- 0.2} for M_CO > 3 x 10^5 M_sun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا