ترغب بنشر مسار تعليمي؟ اضغط هنا

Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modeled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.
The MiniBooNE Experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the $Delta m^2$~1 eV$^2$ region of the sterile neutrino hypothesis by observing $ u_e$ ($b ar u_e$) charged current quasi-elastic signals from a $ u_mu$ ($bar u_mu$) beam. MiniBooNE observed excesses of $ u_e$ and $bar u_e$-candidate events in neutrino and anti-neutrino mode, respectively. To date, these excesses have not been explained within the neutrino Standard Model ($ u$SM), the Standard Model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the Standard Model-Extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. This review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.
The neutrino-induced charged-current quasi-elastic (CCQE, $ u_l+nto l^-+p$ or $bar u_l+pto l^++n$) interaction is the most abundant interaction around 1 GeV, and it is the most fundamental channel to study neutrino oscillations. Recently, MiniBooNE p ublished both muon neutrino and muon anti-neutrino double differential cross sections on carbon. In this review, we describe the details of these analyses and include some historical remarks.
74 - Teppei Katori 2010
The MiniBooNE experiment is a $ u_muto u_e$ and $bar u_mutobar u_e$ appearance neutrino oscillation experiment at Fermilab. The neutrino mode oscillation analysis shows an excess of $ u_e$ candidate events in the low-energy region. These events are a nalyzed under the SME formalism, utilizing the short baseline approximation. The preliminary result shows the time independent solution is favored. The relationship with the SME parameters extracted from the LSND experiment is discussed. The systematic error analysis and antineutrino mode analysis are outlined.
Neutrino oscillation is the only known phenomenon for physics beyond the standard model. To investigate this phenomenon, the understanding of low energy neutrino scattering (200<E<2000 MeV) is the crucial task for high energy physicists. In this ener gy region, the charged current quasi-elastic (CCQE) neutrino interaction is the dominant process, and experiments require a precise model to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events on carbon. The extracted parameters include an effective axial mass, MA=1.23 +- 0.20 GeV, and a Pauli-blocking parameter, kappa = 1.019 +- 0.011.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا