ترغب بنشر مسار تعليمي؟ اضغط هنا

90 - Arti Yardi , Tejas Bodas 2021
Based on the covert communication framework, we consider a covert queueing problem that has a Markovian statistic. Willie jobs arrive according to a Poisson process and require service from server Bob. Bob does not have a queue for jobs to wait and h ence when the server is busy, arriving Willie jobs are lost. Willie and Bob enter a contract under which Bob should only serve Willie jobs. As part of the usage statistic, for a sequence of N consecutive jobs that arrived, Bob informs Willie whether each job was served or lost (this is the Markovian statistic). Bob is assumed to be violating the contract and admitting non-Willie (Nillie) jobs according to a Poisson process. For such a setting, we identify the hypothesis testing to be performed (given the Markovian data) by Willie to detect the presence or absence of Nillie jobs. We also characterize the upper bound on arrival rate of Nillie jobs such that the error in the hypothesis testing of Willie is arbitrarily large, ensuring covertness in admitting Nillie jobs.
We consider a distributed storage system which stores several hot (popular) and cold (less popular) data files across multiple nodes or servers. Hot files are stored using repetition codes while cold files are stored using erasure codes. The nodes ar e prone to failure and hence at any given time, we assume that only a fraction of the nodes are available. Using a cavity process based mean field framework, we analyze the download time for users accessing hot or cold data in the presence of failed nodes. Our work also illustrates the impact of the choice of the storage code on the download time performance of users in the system.
Popular dispatching policies such as the join shortest queue (JSQ), join smallest work (JSW) and their power of two variants are used in load balancing systems where the instantaneous queue length or workload information at all queues or a subset of them can be queried. In situations where the dispatcher has an associated memory, one can minimize this query overhead by maintaining a list of idle servers to which jobs can be dispatched. Recent alternative approaches that do not require querying such information include the cancel on start and cancel on complete based replication policies. The downside of such policies however is that the servers must communicate the start or completion of each service to the dispatcher and must allow cancellation of redundant copies. In this work, we consider a load balancing environment where the dispatcher cannot query load information, does not have a memory, and cannot cancel any replica that it may have created. In such a rigid environment, we allow the dispatcher to possibly append a server side cancellation criteria to each job or its replica. A job or a replica is served only if it satisfies the predefined criteria at the time of service. We focus on a criteria that is based on the waiting time experienced by a job or its replica and analyze several variants of this policy based on the assumption of asymptotic independence of queues. The proposed policies are novel and perform remarkably well in spite of the rigid operating constraints.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا