ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological semimetals, such as Dirac, Weyl, or line-node semimetals, are gapless states of matter characterized by their nodal band structures and surface states. In this work, we consider layered (topologically trivial) insulating systems in $D$ di mensions that are composed of coupled multi-layers of $d$-dimensional topological semimetals. Despite being nominal bulk insulators, we show that crystal defects having co-dimension $(D-d)$ can harbor robust lower dimensional topological semimetals embedded in a trivial insulating background. As an example we show that defect-bound topological semimetals can be localized on stacking faults and partial dislocations. Finally, we propose how an embedded topological Dirac semimetal can be identified in experiment by introducing a magnetic field and resolving the relativistic massless Dirac Landau level spectrum at low energies in an otherwise gapped system.
Two-dimensional higher-order topological insulators can display a number of exotic phenomena such as half-integer charges localized at corners or disclination defects. In this paper, we analyze these phenomena, focusing on the paradigmatic example of the quadrupole insulator with $C_4$ rotation symmetry, and present a topological field theory description of the mixed geometry-charge responses. Our theory provides a unified description of the corner and disclination charges in terms of a physical geometry (which encodes disclinations), and an effective geometry (which encodes corners). We extend this analysis to interacting systems, and predict the response of fractional quadrupole insulators, which exhibit charge $e/2(2k+1)$ bound to corners and disclinations.
Higher order topological insulators (HOTIs) are a new class of topological materials which host protected states at the corners or hinges of a crystal. HOTIs provide an intriguing alternative platform for helical and chiral edge states and Majorana m odes, but there are very few known materials in this class. Recent studies have proposed Bi as a potential HOTI, however, its topological classification is not yet well accepted. In this work, we show that the (110) facets of Bi and BiSb alloys can be used to unequivocally establish the topology of these systems. Bi and Bi$_{0.92}$Sb$_{0.08}$ (110) films were grown on silicon substrates using molecular beam epitaxy and studied by scanning tunneling spectroscopy. The surfaces manifest rectangular islands which show localized hinge states on three out of the four edges, consistent with the theory for the HOTI phase. This establishes Bi and Bi$_{0.92}$Sb$_{0.08}$ as HOTIs, and raises questions about the topological classification of the full family of Bi$_{x}$Sb$_{1-x}$ alloys.
Higher order topological insulators (HOTIs) are a novel form of insulating quantum matter, which are characterized by having gapped boundaries that are separated by gapless corner or hinge states. Recently, it has been proposed that the essential fea tures of a large class of HOTIs are captured by topological multipolar response theories. In this work, we show that these multipolar responses can be realized in interacting lattice models, which conserve both charge and dipole. In this work we study several models in both the strongly interacting and mean-field limits. In $2$D we consider a ring-exchange model which exhibits a quadrupole response, and can be tuned to a $C_4$ symmetric higher order topological phase with half-integer quadrupole moment, as well as half-integer corner charges. We then extend this model to develop an analytic description of adiabatic dipole pumping in an interacting lattice model. The quadrupole moment changes during this pumping process, and if the process is periodic, we show the total change in the quadrupole moment is quantized as an integer. We also consider two interacting $3$D lattice models with chiral hinge modes. We show that the chiral hinge modes are heralds of a recently proposed dipolar Chern-Simons response, which is related to the quadrupole response by dimensional reduction. Interestingly, we find that in the mean field limit, both the $2$D and $3$D interacting models we consider here are equivalent to known models of non-interacting HOTIs (or boundary obstruct
We report on exotic response properties in 3D time-reversal invariant Weyl semimetals with mirror symmetry. Despite having a vanishing anomalous Hall coefficient, we find that the momentum-space quadrupole moment formed by four Weyl nodes determines the coefficient of a mixed emph{electromagnetic charge-stress} response, in which momentum flows perpendicular to an applied electric field, and electric charge accumulates on certain types of lattice defects. This response is described by a mixed Chern-Simons-like term in 3 spatial dimensions, which couples a rank-2 gauge field to the usual electromagnetic gauge field. On certain 2D surfaces of the bulk 3D Weyl semimetal, we find what we will call rank-2 chiral fermions, with $omega =k_x k_y$ dispersion. The intrinsically 2D rank-2 chiral fermions have a mixed charge-momentum anomaly which is cancelled by the bulk of the 3D system.
We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle which is an integer multiple of $2pi$, there can be nontrivial one-dimensional point-gap topology along the direction of the disclination lines. This results in disclination-induced non-Hermitian skin effects. By doubling a non-Hermitian Hamiltonian to a Hermitian three-dimensional chiral topological insulator, we show that the disclination-induced skin modes are zero modes of the effective surface Dirac fermion(s) in the presence of a pseudomagnetic flux induced by disclinations. Furthermore, we find that our results have a field theoretic description, and the corresponding geometric response actions (e.g., the Euclidean Wen-Zee action) enrich the topological field theory of non-Hermitian systems.
We propose an unconventional topological quantum phase transition connecting a higher-order topological insulator (HOTI) and a featureless Mott insulator sharing the same symmetry patterns. We construct an effective theory description of the quantum critical point (QCP) by combining a bosonization approach and the coupled-stripe construction of 1D critical spin ladders. The phase transition theory is characterized by a critical dipole liquid theory with subsystem $U(1)$ symmetry whose low energy modes contain a Bose surface along the $k_x,k_y$ axis. Such a quantum critical point manifests fracton dynamics and the breakdown of the area law entanglement entropy due to the existence of a Bose surface. We numerically confirm our findings by measuring the entanglement entropy, topological rank-2 Berry phase, and the static structure factor throughout the topological transition and compare it with our previous approach obtained from the percolation picture. A significant new element of our phase transition theory is that the infrared~(IR) effective theory is controlled by short wave-length fluctuations with peculiar UV-IR mixing.
We identify topological aspects of the subextensive magnetic moment contributed by the surfaces of a three-dimensional crystallite -- assumed to be insulating in the bulk as well as on all surface facets, with trivial Chern invariants in the bulk. Th e geometric component of this subextensive moment is given by its derivative with respect to the chemical potential, at zero temperature and zero field, per unit surface area, and hence corresponds to the surface magnetic compressibility. The sum of the surface compressibilities contributed by two opposite facets of a cube-shaped crystallite is quantized to an integer multiple of the fundamental constant $e/h c$; this integer is in one-to-one correspondence with the net chirality of hinge modes on the surface of the crystallite, manifesting a link with higher-order topology. The contribution by a single facet to the magnetic compressibility need not be quantized to integers; however, symmetry and/or Hilbert-space constraints can fix the single-facet compressibility to half-integer multiples of $e/hc$, as will be exemplified by the Hopf insulator.
When translational symmetry is broken by bulk disorder, the topological nature of states in topological crystalline systems may change depending on the type of disorder that is applied. In this work, we characterize the phases of a one-dimensional (1 D) chain with inversion and chiral symmetries, where every disorder configuration is inversion-symmetric. By using a basis-independent formulation for the inversion topological invariant, chiral winding number, and bulk polarization, we are able to construct phase diagrams for these quantities when disorder is present. We show that unlike the chiral winding number and bulk polarization, the inversion topological invariant can fluctuate when the bulk spectral gap closes at strong disorder. Using the position-space renormalization group, we are able to compare how the inversion topological invariant, chiral winding number and bulk polarization behave at low energies in the strong disorder limit. We show that with inversion symmetry-preserving disorder, the value of the inversion topological invariant is determined by the inversion eigenvalues of the states at the inversion centers, while quantities such as the chiral winding number and the bulk polarization still have contributions from every state throughout the chain. We also show that it is possible to alter the value of the inversion topological invariant in a clean system by occupying additional states at the inversion centers while keeping the bulk polarization fixed. We discuss the implications of our results for topological crystalline phases in higher-dimensional electronic systems, and in ultra-cold atomic systems.
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th at eliminates the MZMs. In this work, we show that the phenomenology in higher-order topological insulators (HOTIs) can be qualitatively distinct. In particular, we find two distinct features. (i) We find that vortices placed on the gapped (side) surfaces of the HOTI, exhibit a pair of phase transitions as a function of doping. The first transition is a surface phase transition after which MZMs appear. The second transition is the well-known vortex phase transition. We find that the surface transition appears because of the competition between the superconducting gap and the local $mathcal{T}$-breaking gap on the surface. (ii) We present numerical evidence that shows strong variation of the critical doping for the vortex phase transition as the center of the vortex is moved toward or away from the hinges of the sample. We believe our work provides new phenomenology that can help identify HOTIs, as well as illustrating a promising platform for the realization of MZMs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا