ترغب بنشر مسار تعليمي؟ اضغط هنا

A report is made on the luminosity and pulse-period evolution of the Be binary X-ray pulsar, GX 304$-$1, during a series of outbursts from 2009 to 2013 observed by MAXI/GSC, RXTE/PCA, and Fermi/GBM. In total, twelve outbursts repeated by $sim$ 132.2 days were observed, which is consistent with the X-ray periodicity of this object observed in the 1970s. These 12 outbursts, together with those in the 1970s, were found to all recur with a well defined period of 132.189$pm$0.02 d, which can be identified with the orbital period. The pulse period at $sim 275$ s, obtained from the RXTE/PCA and Fermi/GBM data, apparently exhibited a periodic modulation synchronized with the outburst period, suggesting the pulsar orbital motion, which is superposed on a secular spin-up trend throughout the entire active phase. The observed pulse-period changes were successfully represented by a model composed of the binary orbital modulation and pulsar spin up caused by mass accretion through an accretion disk. The orbital elements obtained from the best-fit model, including the projected orbital semi-major axis $a_{rm x}sin i simeq 500-600$ light-s and an eccentricity $e simeq 0.5$, are typical of Be binary X-ray pulsars.
Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.
We are now investigating and studying a small satellite mission HiZ-GUNDAM for future observation of gamma-ray bursts (GRBs). The mission concept is to probe the end of dark ages and the dawn of formation of astronomical objects, i.e. the physical co ndition of early universe beyond the redshift z > 7. We will consider two kinds of mission payloads, (1) wide field X-ray imaging detectors for GRB discovery, and (2) a near infrared telescope with 30 cm in diameter to select the high-z GRB candidates effectively. In this paper, we explain some requirements to promote the GRB cosmology based on the past observations, and also introduce the mission concept of HiZ-GUNDAM and basic development of X-ray imaging detectors.
MAXI/GSC observed 21 outbursts from Circinus X-1 between 2009 August and 2013 December. Although 14 outbursts showed ordinary gradual decays, in 7 outbursts we found sudden luminosity decrease in a time scale of a few hours around the periastron, and then the outbursts terminated. These sudden decreases started at the estimated luminosity of a few times $10^{37}$ erg s$^{-1}$ and reached to $lesssim3times10^{36}$ erg s$^{-1}$. We propose three interpretations for the sudden luminosity decrease: (1) the end of the outburst during the dip, (2) the propeller effect, and (3) the stripping effect by the stellar wind of the companion star. It is difficult to explain the phenomenon with any of these interpretations alone. The interpretation of (1) is possible for only two outbursts assuming rapid decay. The propeller effect (2) is expected to occur at a constant luminosity, which is incompatible with the observed facts. In wind stripping effect (3), the ram pressure of a typical stellar wind is not sufficient to blow out most of the accretion disk. In this paper, we discuss a possibility of a modified effect of (3) assuming other additional conditions such as wind clumping and disk instability.
We report on the firm detection of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of the Be X-ray binary pulsar, GRO J1008-57, achieved by the Suzaku Hard X-ray Detector during a giant outburst which was detected by the MAXI Ga s Slit Camera in 2012 November. The Suzaku observation was carried out on 2012 November 20, outburst maximum when the X-ray flux reached $sim 0.45$ Crab in 4-10 keV, which corresponds to a luminosity of $1.1 times 10^{38}$ erg s$^{-1}$ in 0.5--100 keV at 5.8 kpc. The obtained broadband X-ray spectrum from 0.5 keV to 118 keV revealed a significant absorption feature, considered as the fundamental CRSF, at $sim 76$ keV. This unambiguously reconfirm the previously suggested $sim$ 80 keV spectral feature in GRO J1008$-$57. The implied surface magnetic field, $6.6times 10^{12}$ G, is the highest among binary X-ray pulsars from which CRSFs have ever been detected.
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability c an be studied by the power spectrum density (PSD) of the X-ray light curves.We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies.For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
395 - Motoki Nakajima 2013
Over the 3-year active period from 2008 September to 2011 November, the outburst behavior of the Be/X-ray binary A 0535+26 was continuously monitored with the MAXI/GSC and the Swift/BAT. The source exhibited nine outbursts, every binary revolution of 111.1 days, of which two are categorized into the giant (type-II) outbursts. The recurrence period of these outbursts is found to be $sim115$ days, significantly longer than the orbital period of 111.1 days. With the MAXI/GSC, a low-level active period, or a precursor, was detected prior to at least four giant outbursts. The precursor recurrence period agrees with that of the giant outbursts. The period difference of the giant outbursts from the orbital period is possibly related with some structures in the circumstellar disc formed around the Be companion. Two scenarios, one based on a one-armed disc structure and the other a Be-disc precession, are discussed.
We analyzed the initial rising behaviors of X-ray outbursts from two transient low-mass X-ray binaries (LMXBs) containing a neutron-star (NS), Aql X-1 and 4U 1608-52, which are continuously being monitored by MAXI/GSC in 2--20 keV, RXTE/ASM in 2--10 keV, and Swift/BAT in 15--50 keV. We found that the observed ten outbursts are classified into two types by the patterns of the relative intensity evolutions in the two energy bands below/above 15 keV. One type behaves as the 15--50 keV intensity achieves the maximum during the initial hard-state period and drops greatly at the hard-to-soft state transition. On the other hand, the other type does as both the 2--15 keV and the 15--50 keV intensities achieve the maximums after the transition. The former have the longer initial hard-state ($gtrsim$ 9 d) than the latters ($ltsim$5 d). Therefore, we named them as slow-type (S-type) and fast-type (F-type), respectively. These two types also show the differences in the luminosity at the hard-to-soft state transition as well as in the average luminosity before the outburst started, where the S-type are higher than the F-type in the both. These results suggest that the X-ray radiation during the pre-outburst period, which heats up the accretion disk and delays the disk transition (i.e., from a geometrically thick disk to a thin one), would determine whether the following outburst becomes S-type or F-type. The luminosity when the hard-to-soft state transition occurs is higher than $sim 8 times10^{36}$ erg s$^{-1}$ in the S-type, which corresponds to 4% of the Eddington luminosity for a 1.4 Mo NS.
The Gas Slit Camera (GSC) is an X-ray instrument on the MAXI (Monitor of All-sky X-ray Image) mission on the International Space Station. It is designed to scan the entire sky every 92-minute orbital period in the 2--30 keV band and to achieve the hi ghest sensitivity among the X-ray all-sky monitors ever flown so far. The GSC employs large-area position-sensitive proportional counters with the total detector area of 5350 cm$^2$. The on-board data processor has functions to format telemetry data as well as to control the high voltage of the proportional counters to protect them from the particle irradiation. The paper describes the instruments, on-board data processing, telemetry data formats, and performance specifications expected from the ground calibration tests.
We report the discovery of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of GX 304-1, obtained by RXTE and Suzaku during major outbursts detected by MAXI in 2010. The peak intensity in August reached 600 mCrab in the 2-20 keV band, which is the highest ever observed from this source. The RXTE observations on more than twenty occasions and one Suzaku observation revealed a spectral absorption feature at around 54 keV, which is the first CRSF detection from this source. The estimated strength of surface magnetic field, $4.7 times 10^{12}$ G, is one of the highest among binary X-ray pulsars from which CRSFs have ever been detected. The RXTE spectra taken during the August outburst also suggest that the CRSF energy changed over 50-54 keV, possibly in a positive correlation with the X-ray flux. The behavior is qualitatively similar to that observed from Her X-1 on long time scales, or from A 0535+26, but different from the negative correlation observed from 4U 0115+63 and X 0331+53.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا