ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider correlation properties of twophoton polarization states in the parametric down-conversion process. In our description of polarization states we take into account the simultaneous presence of colored and white noise in the density matrix. Within the considered model we study the dependence of the von Neumann entropy on the noise amount in the system and derive the separability condition for the density matrix of twophoton polarization state, using Perec-Horodecki criterion and majorization criterion. Then the dependence of the Bell operator (in CHSH form) on noise is studied. As a result, we give a condition for determining the presence of quantum correlation states in experimental measurements of the Bell operator. Finally, we compare our calculations with experimental data [doi:10.1103/PhysRevA.73.062110] and give a noise amount estimation in the photon polarization state considered there.
We propose a model for isotropization and corresponding thermalization in a nucleon system created in the collision of two nuclei. The model is based on the assumption: during the fireball evolution, two-particle elastic and inelastic collisions give rise to the randomization of the nucleon-momentum transfer which is driven by a proper distribution. As a first approximation, we assume a homogeneous distribution where the values of the momentum transfer is bounded from above. These features have been shown to result in a smearing of the particle momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The nonequilibrium single-particle distribution function and single-particle spectrum which carry a memory about initial state of nuclei have been obtained.
The robustness of Bells inequality (in CHSH form) violation by entangled state in the simultaneous presence of colored and white noise in the system is considered. A twophoton polarization state is modeled by twoparameter density matrix. Setting para meter values one can vary the relative fraction of pure entangled Bells state as well as white and colored noise fractions. Bells operator-parameter dependence analysis is made. Computational results are compared with experimental data [quant-ph/0511265] and with results computed using a oneparameter density matrix [doi: 10.1103/PhysRevA.72.052112], which one can get as a special case of the model considered in this work.
The partition function of nonequilibrium distribution which we recently obtained [arXiv:0802.0259] in the framework of the maximum isotropization model (MIM) is exploited to extract physical information from experimental data on the proton rapidity a nd transverse mass distributions. We propose to partition all interacting nucleons into ensembles in accordance with the number of collisions. We analyze experimental rapidity distribution and get the number of particles in every collision ensemble. We argue that even a large number of effective nucleon collisions cannot lead to thermalization of nucleon system; the thermal source which describes the proton distribution in central rapidity region arises as a result of fast thermalization of the parton degrees of freedom. The obtained number of nucleons which corresponds to the thermal contribution is treated as a ``nucleon power of the created quark-gluon plasma in a particular experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا