ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi2 Te3 thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak anti-localization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.
The structure of nuclei with $Zsim100$ is investigated systematically by the Cranked Shell Model (CSM) with pairing correlations treated by a Particle-Number Conserving (PNC) method. In the PNC method, the particle number is conserved and the Pauli b locking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters ($kappa$ and $mu$) is proposed. The experimental kinematic moments of inertia and the band-head energies are reproduced quite well by the PNC-CSM calculations. The band crossing, the effects of high-$j$ intruder orbitals and deformation are discussed in detail.
We develop a theoretical model for how organic molecules can control the electronic and transport properties of an underlying transistor channel to whose surface they are chemically bonded. The influence arises from a combination of long-ranged dipol ar electrostatics due to the molecular head-groups, as well as short-ranged charge transfer and interfacial dipole driven by equilibrium band-alignment between the molecular backbone and the reconstructed semiconductor surface atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا