ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - Junsong Sun , Nvsen Ma , Tao Ying 2021
The honeycomb antiferromagnet under a triaxial strain is studied using the quantum Monte Carlo simulation. The strain dimerizes the exchange couplings near the corners, thus destructs the antiferromagnetic order therein. The antiferromagnetic region is continuously reduced by the strain. For the same strain strength, the exact numerical results give a much smaller antiferromagnetic region than the linear spin-wave theory. We then study the strained $XY$ antiferromagnet, where the magnon pseudo-magnetic field behaves quite differently. The $0$th Landau level appears in the middle of the spectrum, and the quantized energies above (below) it are proportional to $n^{frac{1}{3}} (n^{frac{2}{3}})$, which is in great contrast to the equally-spaced ones in the Heisenberg case. Besides, we find the antiferromagnetic order of the $XY$ model is much more robust to the dimerization than the Heisenberg one. The local susceptibility of the Heisenberg case is extracted by the numerical analytical continuation, and no sign of the pseudo-Landau levels is resolved. It is still not sure whether the result is due to the intrinsic problem of the numerical analytical continuation. Thus the existence of the magnon pseudo-Landau levels in the spin-$frac{1}{2}$ strained Heisenberg Hamiltonian remains an open question. Our results are closely related to the two-dimensional van der Waals quantum antiferromagnets and may be realized experimentally.
115 - Tao Hong , Tao Ying , Qing Huang 2020
We present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics in the spin-1/2 coupled ladder compound C$_9$H$_{18}$N$_2$CuBr$_4$. The applied pressure is demonstrated as a parameter to effectively tune the exchange interactions in the spin Hamiltonian without inducing a structural transition. The single-crystal heat capacity and neutron diffraction measurements reveal that the N$rm acute{e}$el ordered state breaks down at and above a critical pressure $P_{rm c}$$sim$1.0 GPa through a continuous quantum phase transition. The thorough analysis of the critical exponents indicates that such transition with a large anomalous exponent $eta$ into a quantum-disordered state cannot be described by the classic Landaus paradigm. Using inelastic neutron scattering and quantum Monte Carlo methods, the high-pressure regime is proposed as a $Z_2$ quantum spin liquid phase in terms of characteristic fully gapped vison-like and fractionalized excitations in distinct scattering channels.
Polarized inelastic neutron scattering experiments recently identified the amplitude (Higgs) mode in C$_9$H$_{18}$N$_2$CuBr$_4$, a two-dimensional near-quantum-critical spin-1/2 two-leg ladder compound, which exhibits a weak easy-axis exchange anisot ropy. Here, we theoretically examine the dynamic spin structure factor of such planar coupled spin-ladder systems using large-scale quantum Monte Carlo simulations. This allows us to provide a quantitative account of the experimental neutron scattering data within a consistent quantum spin model. Moreover, we trance the details of the continuous evolution of the amplitude mode from a two-particle bound state of coupled ladders in the classical Ising limit all the way to the quantum spin-1/2 Heisenberg limit with fully restored SU(2) symmetry, where it gets overdamped by the two-magnon continuum in neutron scattering.
We report inelastic neutron scattering measurements of the magnetic excitations in Ba2CuTeO6, proposed by ab initio calculations to magnetically realize weakly coupled antiferromagnetic two-leg spin-1/2 ladders. Isolated ladders are expected to have a singlet ground state protected by a spin gap. Ba2CuTeO6 orders magnetically, but with a small Neel temperature relative to the exchange strength, suggesting that the interladder couplings are relatively small and only just able to stabilize magnetic order, placing Ba2CuTeO6 close in parameter space to the critical point separating the gapped phase and Neel order. Through comparison of the observed spin dynamics with linear spin wave theory and quantum Monte Carlo calculations, we propose values for all relevant intra- and interladder exchange parameters, which place the system on the ordered side of the phase diagram in proximity to the critical point. We also compare high field magnetization data with quantum Monte Carlo predictions for the proposed model of coupled ladders.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا