ترغب بنشر مسار تعليمي؟ اضغط هنا

Traditional oversampling methods are generally employed to handle class imbalance in datasets. This oversampling approach is independent of the classifier; thus, it does not offer an end-to-end solution. To overcome this, we propose a three-player ad versarial game-based end-to-end method, where a domain-constraints mixture of generators, a discriminator, and a multi-class classifier are used. Rather than adversarial minority oversampling, we propose an adversarial oversampling (AO) and a data-space oversampling (DO) approach. In AO, the generator updates by fooling both the classifier and discriminator, however, in DO, it updates by favoring the classifier and fooling the discriminator. While updating the classifier, it considers both the real and synthetically generated samples in AO. But, in DO, it favors the real samples and fools the subset class-specific generated samples. To mitigate the biases of a classifier towards the majority class, minority samples are over-sampled at a fractional rate. Such implementation is shown to provide more robust classification boundaries. The effectiveness of our proposed method has been validated with high-dimensional, highly imbalanced and large-scale multi-class tabular datasets. The results as measured by average class specific accuracy (ACSA) clearly indicate that the proposed method provides better classification accuracy (improvement in the range of 0.7% to 49.27%) as compared to the baseline classifier.
The Latent Space Clustering in Generative adversarial networks (ClusterGAN) method has been successful with high-dimensional data. However, the method assumes uniformlydistributed priors during the generation of modes, which isa restrictive assumptio n in real-world data and cause loss ofdiversity in the generated modes. In this paper, we proposeself-augmentation information maximization improved Clus-terGAN (SIMI-ClusterGAN) to learn the distinctive priorsfrom the data. The proposed SIMI-ClusterGAN consists offour deep neural networks: self-augmentation prior network,generator, discriminator and clustering inference autoencoder.The proposed method has been validated using seven bench-mark data sets and has shown improved performance overstate-of-the art methods. To demonstrate the superiority ofSIMI-ClusterGAN performance on imbalanced dataset, wehave discussed two imbalanced conditions on MNIST datasetswith one-class imbalance and three classes imbalanced cases.The results highlight the advantages of SIMI-ClusterGAN.
We propose a three-player spectral generative adversarial network (GAN) architecture to afford GAN with the ability to manage minority classes under imbalance conditions. A class-dependent mixture generator spectral GAN (MGSGAN) has been developed to force generated samples remain within the domain of the actual distribution of the data. MGSGAN is able to generate minority classes even when the imbalance ratio of majority to minority classes is high. A classifier based on lower features is adopted with a sequential discriminator to form a three-player GAN game. The generator networks perform data augmentation to improve the classifiers performance. The proposed method has been validated through two hyperspectral images datasets and compared with state-of-the-art methods under two class-imbalance settings corresponding to real data distributions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا