ترغب بنشر مسار تعليمي؟ اضغط هنا

The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few tens of kpc, conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically-aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during the formation of a cold filament produces accompanying hot filaments, which can be searched for in deep Chandra observations of nearby cool-core clusters. In the case of the MTI, anisotropic viscosity maintains the coherence of magnetic-field lines over larger distances than in the inviscid case, providing a natural lower limit for the scale on which the field can fluctuate freely. In the nonlinear state, the magnetic field exhibits a folded structure in which the field-line curvature and field strength are anti-correlated.
Observations of the Galactic Center (GC) have accumulated a multitude of forensic evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rathe r different picture from the GC as we understand it today. We examine a possibility that this epoch of activity could have been triggered by the infall of a satellite galaxy into the Milky Way which began at the redshift of 10 and ended few million years ago with a merger of the Galactic supermassive black hole with an intermediate mass black hole brought in by the inspiralling satellite.
139 - Tamara Bogdanovic , 2009
Detection of electromagnetic (EM) counterparts of pre-coalescence binaries has very important implications for our understanding of the evolution of these systems as well as the associated accretion physics. In addition, a combination of EM and gravi tational wave signatures observed from coalescing supermassive black hole binaries (SBHBs) would provide independent measurements of redshift and luminosity distance, thus allowing for high precision cosmological measurements. However, a statistically significant sample of these objects is yet to be attained and finding them observationally has proven to be a difficult task. Here we discuss existing observational evidence and how further advancements in the theoretical understanding of observational signatures of SBHBs before and after the coalescence can help in future searches.
72 - Tamara Bogdanovic , 2009
A search for recoiling supermassive black hole candidates recently yielded the best candidate thus far, SDSS J092712.65+294344.0 reported by Komossa et al. Here we propose the alternative hypothesis that this object is a supermassive black hole binar y. From the velocity shift imprinted in the emission-line spectrum we infer an orbital period of ~190 years for a binary mass ratio of 0.1, a secondary black hole mass of 100 million solar masses, and assuming inclination and orbital phase angles of 45 degrees. In this model the origin of the blueshifted narrow emission lines is naturally explained in the context of an accretion flow within the inner rim of the circumbinary disk. We attribute the blueshifted broad emission lines to gas associated with a disk around the accreting secondary black hole. We show that, within the uncertainties, this binary system can be long lived and thus, is not observed in a special moment in time. The orbital motion of the binary can potentially be observed with the VLBA if at least the secondary black hole is a radio emitter. In addition, for the parameters quoted above, the orbital motion will result in a ~100 km/s velocity shift of the emission lines on a time scale of about a year, providing a direct observational test for the binary hypothesis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا