ترغب بنشر مسار تعليمي؟ اضغط هنا

We define specific multiplicities on the braid arrangement by using edge-bicolored graphs. To consider their freeness, we introduce the notion of bicolor-eliminable graphs as a generalization of Stanleys classification theory of free graphic arrangem ents by chordal graphs. This generalization gives us a complete classification of the free multiplicities defined above. As an application, we prove one direction of a conjecture of Athanasiadis on the characterization of the freeness of the deformation of the braid arrangement in terms of directed graphs.
The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q,t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free.
147 - Takuro Abe , Hiroaki Terao 2014
In this article we prove that the ideal-Shi arrangements are free central arrangements of hyperplanes satisfying the dual-partition formula. Then it immediately follows that there exists a saturated free filtration of the cone of any affine Weyl arra ngement such that each filter is a free subarrangement satisfying the dual-partition formula. This generalizes the main result in cite{ABCHT} which affirmatively settled a conjecture by Sommers and Tymoczko cite{SomTym}.
226 - Takuro Abe , Daisuke Suyama 2013
In [9], Terao proved the freeness of multi-Coxeter arrangements with constant multiplicities by giving an explicit construction of bases. Combining it with algebro-geometric method, Yoshinaga proved the freeness of the extended Catalan and Shi arrang ements in [11]. However, there have been no explicit constructions of the bases for the logarithmic derivation modules of the extended Catalan and Shi arrangements. In this paper, we give the first explicit construction of them when the root system is of the type $A_2$.
A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any idea l subarrangement is a free arrangement and that its exponents are given by the dual partition of the height distribution, which was conjectured by Sommers-Tymoczko. In particular, when an ideal subarrangement is equal to the entire Weyl arrangement, our main theorem yields the celebrated formula by Shapiro, Steinberg, Kostant, and Macdonald. Our proof of the main theorem heavily depends on the theory of free arrangements and thus greatly differs from the earlier proofs of the formula.
In this paper, we specify a class of mathematical problems, which we refer to as Function Density Problems (FDPs, in short), and point out novel connections of FDPs to the following two cryptographic topics; theoretical security evaluations of keyles s hash functions (such as SHA-1), and constructions of provably secure pseudorandom generators (PRGs) with some enhanced security property introduced by Dubrov and Ishai [STOC 2006]. Our argument aims at proposing new theoretical frameworks for these topics (especially for the former) based on FDPs, rather than providing some concrete and practical results on the topics. We also give some examples of mathematical discussions on FDPs, which would be of independent interest from mathematical viewpoints. Finally, we discuss possible directions of future research on other cryptographic applications of FDPs and on mathematical studies on FDPs themselves.
277 - Takuro Abe , Hiroaki Terao 2011
In his affirmative answer to the Edelman-Reiner conjecture, Yoshinaga proved that the logarithmic derivation modules of the cones of the extended Shi arrangements are free modules. However, all we know about the bases is their existence and degrees. In this article, we introduce two distinguished bases for the modules. More specifically, we will define and study the simple-root basis plus (SRB+) and the simple-root basis minus (SRB-) when a primitive derivation is fixed. They have remarkable properties relevant to the simple roots and those properties characterize the bases.
We introduce a concept of multiplicity lattices of 2-multiarrangements, determine the combinatorics and geometry of that lattice, and give a criterion and method to construct a basis for derivation modules effectively.
205 - Takuro Abe , Hiroaki Terao 2010
Let $W$ be a finite Weyl group and $A$ be the corresponding Weyl arrangement. A deformation of $A$ is an affine arrangement which is obtained by adding to each hyperplane $HinA$ several parallel translations of $H$ by the positive root (and its integ er multiples) perpendicular to $H$. We say that a deformation is $W$-equivariant if the number of parallel hyperplanes of each hyperplane $Hin A$ depends only on the $W$-orbit of $H$. We prove that the conings of the $W$-equivariant deformations are free arrangements under a Shi-Catalan condition and give a formula for the number of chambers. This generalizes Yoshinagas theorem conjectured by Edelman-Reiner.
Let $A$ be an irreducible Coxeter arrangement and $W$ be its Coxeter group. Then $W$ naturally acts on $A$. A multiplicity $bfm : Arightarrow Z$ is said to be equivariant when $bfm$ is constant on each $W$-orbit of $A$. In this article, we prove that the multi-derivation module $D(A, bfm)$ is a free module whenever $bfm$ is equivariant by explicitly constructing a basis, which generalizes the main theorem of cite{T02}. The main tool is a primitive derivation and its covariant derivative. Moreover, we show that the $W$-invariant part $D(A, bfm)^{W}$ for any multiplicity $bfm$ is a free module over the $W$-invariant subring.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا