ترغب بنشر مسار تعليمي؟ اضغط هنا

This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie and Maeno was published in 2003. Here, special focus is placed on the critical evaluation of the spin-triplet, odd-parity pairing scenario applied to Sr2RuO4. After an introduction to superconductors with possible odd-parity pairing, accumulated evidence for the pairing symmetry of Sr2RuO4 is examined. Then, significant recent progress on the theoretical approaches to the superconducting pairing by Coulomb repulsion is reviewed. A section is devoted to some experimental properties of Sr2RuO4 that seem to defy simple explanations in terms of currently available spin-triplet scenario. The next section deals with some new developments using eutectic boundaries and micro-crystals, which reveals novel superconducting phenomena related to chiral edge states, odd-frequency pairing states, and half-fluxoid states. Some of these properties are intimately connected with the properties as a topological superconductor. The article concludes with a summary of knowledge emerged from the study of Sr2RuO4 that are now more widely applied to understand the physics of other unconventional superconductors, as well as with a brief discussion of relatively unexplored but promising areas of ongoing and future studies of Sr2RuO4.
We present a detailed analysis of the incident-photon-energy and polarization dependences of the resonant inelastic x-ray scattering (RIXS) spectra at the Cu $K$ edge in La$_{2}$CuO$_{4}$. Our analysis is based on the formula developed by Nomura and Igarashi, which describes the spectra by a product of an incident-photon-dependent factor and a density-density correlation function for 3d states. We calculate the former factor using the $4p$ density of states from an ab initio band structure calculation and the latter using a multiorbital tight-binding model within the Hartree-Fock approximation and the random phase approximation. We obtain spectra with rich structures in the energy-loss range 2-5 eV, which vary with varying momentum and incident-photon energy, in semi-quantitative agreement with recent experiments. We clarify the origin of such changes as a combined effect of the incident-photon-dependent factor and the density-density correlation function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا