ترغب بنشر مسار تعليمي؟ اضغط هنا

CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction in magnetic fields, we have verified that the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed an asymmetric field dependence of the intensity for an electric quadrupole (E2) resonance when the field was reversed, and extracted a field dependence of the octupole by utilizing the interference with an electric dipole (E1) resonance. The result is in good agreement with that of the NMR-line splitting, which reflects the transferred hyperfine field at the Boron nucleus from the anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The field-reversal method used in the present study opens up the possibility of being widely applied to other multipole ordering systems such as NpO2, Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.
Structural phase transition accompanying with quadrupolar ordering in DyB4 with Shastry-Sutherland type geometrical frustration has been studied by X-ray diffraction. Previous study [D. Okuyama et al.: J. Phys. Soc. Jpn. 74 (2005) 2434.] using resona nt X-ray scattering revealed short-range ordering of the Ozx-type quadrupolar moments and the c-plane component of the magnetic moments in addition to long-range ordering of the c-axis component of the magnetic moments. The present report focuses on the lattice distortion below the quadrupolar ordering temperature at TN2=12.7 K. The (0 0 l=integer) fundamental lattice reflection splits into four peaks along the h and k directions and the (h=even 0 0) reflection becomes broad along the l direction. This indicates that a structural transition from tetragonal to monoclinic takes place below TN2 together with the ordering of the quadrupolar moments.
We have examined whether the Co ions crystallographically substitute on the Ti sites in rutile and anatase Ti_{1-x}$Co$_{x}$O$_{2-delta}$ thin films that exhibit room-temperature ferromagnetism. Intensities of the x-ray Bragg reflection from the film s were measured around the $K$-absorption-edge of Co. If the Co ions randomly substitute on the Ti sites, the intensity should exhibit an anomaly due to the anomalous dispersion of the atomic scattering factor of Co. However, none of the anatase and rutile samples did exhibit an anomaly, unambiguously showing that the Co ions in Ti$_{1-x}$Co$_{x}$O$_{2-delta}$ are not exactly located at the Ti sites of TiO$_2$. The absence of the anomaly is probably caused by a significant deformation of the local structure around Co due to the oxygen vacancy. We have applied the same method to paramagnetic Zn$_{1-x}$Co$_{x}$O thin films and obtained direct evidence that the Co ions are indeed substituted on the Zn sites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا