ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed a 2.5 dimensional magnetohydrodynamic simulation that resolves the propagation and dissipation of Alfven waves in the solar atmosphere. Alfvenic fluctuations are introduced on the bottom boundary of the extremely large simulation bo x that ranges from the photosphere to far above the solar wind acceleration region. Our model is ab initio in the sense that no corona and no wind are assumed initially.The numerical experiment reveals the quasi-steady solution that has the transition from the cool to the hot atmosphere and the emergence of the high speed wind. The global structure of the resulting hot wind solution fairly well agree with the coronal and the solar wind structure inferred from observations. The purpose of this study is to complement the previous paper by Matsumoto & Suzuki (2012) and describe the more detailed results and the analysis method. These results include the dynamics of the transition region and the more precisely measured heating rate in the atmosphere. Particularly, the spatial distribution of the heating rate helps us to interpret the actual heating mechanisms in the numerical simulation.Our estimation method of heating rate turned out to be a good measure for dissipation of Alfven waves and low beta fast waves.
351 - Takeru K. Suzuki 2012
We investigate mass losses via stellar winds from sun-like main sequence stars with a wide range of activity levels. We perform forward-type magnetohydrodynamical numerical experiments for Alfven wave-driven stellar winds with a wide range of the inp ut Poynting flux from the photosphere. Increasing the magnetic field strength and the turbulent velocity at the stellar photosphere from the current solar level, the mass loss rate rapidly increases at first owing to the suppression of the reflection of the Alfven waves. The surface materials are lifted up by the magnetic pressure associated with the Alfven waves, and the cool dense chromosphere is intermittently extended to 10 -- 20 % of the stellar radius. The dense atmospheres enhance the radiative losses and eventually most of the input Poynting energy from the stellar surface escapes by the radiation. As a result, there is no more sufficient energy remained for the kinetic energy of the wind; the stellar wind saturates in very active stars, as observed in Wood et al. The saturation level is positively correlated with B_{r,0}f_0, where B_{r,0} and f_0 are the magnetic field strength and the filling factor of open flux tubes at the photosphere. If B_{r,0}f_0 is relatively large >~ 5 G, the mass loss rate could be as high as 1000 times. If such a strong mass loss lasts for ~ 1 billion years, the stellar mass itself is affected, which could be a solution to the faint young sun paradox. We derive a Reimers-type scaling relation that estimates the mass loss rate from the energetics consideration of our simulations. Finally, we derive the evolution of the mass loss rates, dot{M} t^{-1.23}, of our simulations, combining with an observed time evolution of X-ray flux from sun-like stars, which is shallower than dot{M} t^{-2.33+/-0.55} in Wood et al.(2005).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا