ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first independent, second-epoch (re-)detection of a directly-imaged protoplanet candidate. Using $L^prime$ high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager (NICI) on Gemini South, we recover `HD 100 546 b with a position and brightness consistent with the original VLT/NaCo detection from Quanz et al, although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to $approx$ 12-13 AU in diameter, and is embedded in a finger of thermal IR bright, polarized emission extending inwards to at least 0.3. Standard hot-start models imply a mass of $approx$ 15 $M_{J}$. But if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g. 1--7 $M_{J}$). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90 degrees away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to $approx$ 0.45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen wide-separation planet. With one confirmed protoplanet candidate and evidence for 1--2 others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-jovian planets at moderate/wide separations like HR 8799.
We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inc lination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا