ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - Kaori Nagashima 2009
We report on a signature of chromospheric downflows in two emerging-flux regions detected by time-distance helioseismology analysis. We use both chromospheric intensity oscillation data in the Ca II H line and photospheric Dopplergrams in the Fe I 55 7.6nm line obtained by Hinode/SOT for our analyses. By cross-correlating the Ca II oscillation signals, we have detected a travel-time anomaly in the plage regions; outward travel times are shorter than inward travel times by 0.5-1 minute. However, such an anomaly is absent in the Fe I data. These results can be interpreted as evidence of downflows in the lower chromosphere. The downflow speed is estimated to be below 10 km/s. This result demonstrates a new possibility of studying chromospheric flows by time-distance analysis.
Results from initial helioseismic observations by Solar Optical Telescope onboard Hinode are reported. It has been demonstrated that intensity oscillation data from Broadband Filter Imager can be used for various helioseismic analyses. The k-omega po wer spectra, as well as corresponding time-distance cross-correlation function that promises high-resolution time-distance analysis below 6-Mm travelling distance, were obtained for G-band and CaII-H data. Subsurface supergranular patterns have been observed from our first time-distance analysis. The results show that the solar oscillation spectrum is extended to much higher frequencies and wavenumbers, and the time-distance diagram is extended to much shorter travel distances and times than they were observed before, thus revealing great potential for high-resolution helioseismic observations from Hinode.
Exploiting high-resolution observations made by the Solar Optical Telescope onboard Hinode, we investigate the spatial distribution of power spectral density of oscillatory signal in and around NOAA active region 10935. The G-band data show that in t he umbra the oscillatory power is suppressed in all frequency ranges. On the other hand, in Ca II H intensity maps oscillations in the umbra, so-called umbral flashes, are clearly seen with the power peaking around 5.5 mHz. The Ca II H power distribution shows the enhanced elements with the spatial scale of the umbral flashes over most of the umbra but there is a region with suppressed power at the center of the umbra. The origin and property of this node-like feature remain unexplained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا