ترغب بنشر مسار تعليمي؟ اضغط هنا

The physical origin of the overionized recombining plasmas (RPs) in supernova remnants (SNRs) has been attracting attention because its understanding provides new insight into SNR evolution. However, the process of the overionization, although it has been discussed in some RP-SNRs, is not yet fully understood. Here we report on spatially resolved spectroscopy of X-ray emission from IC~443 with {it XMM-Newton}. We find that RPs in regions interacting with dense molecular clouds tend to have lower electron temperature and lower recombination timescale. These tendencies indicate that RPs in these regions are cooler and more strongly overionized, which is naturally interpreted as a result of rapid cooling by the molecular clouds via thermal conduction. Our result on IC~443 is similar to that on W44 showing evidence for thermal conduction as the origin of RPs at least in older remnants. We suggest that evaporation of clumpy gas embedded in a hot plasma rapidly cools the plasma as was also found in the W44 case. We also discuss if ionization by protons accelerated in IC~443 is responsible for RPs. Based on the energetics of particle acceleration, we conclude that the proton bombardment is unlikely to explain the observed properties of RPs.
In spite of their importance as standard candles in cosmology and as major major sites of nucleosynthesis in the Universe, what kinds of progenitor systems lead to type Ia supernovae (SN) remains a subject of considerable debate in the literature. Th is is true even for the case of Tychos SN exploded in 1572 although it has been deeply studied both observationally and theoretically. Analyzing X-ray data of Tychos supernova remnant (SNR) obtained with Chandra in 2003, 2007, 2009, and 2015, we discover that the expansion before 2007 was substantially faster than radio measurements reported in the past decades and then rapidly decelerated during the last ~ 15 years. The result is well explained if the shock waves recently hit a wall of dense gas surrounding the SNR. Such a gas structure is in fact expected in the so-called single-degenerate scenario, in which the progenitor is a binary system consisting of a white dwarf and a stellar companion, whereas it is not generally predicted by a competing scenario, the double-degenerate scenario, which has a binary of two white dwarfs as the progenitor. Our result thus favors the former scenario. This work also demonstrates a novel technique to probe gas environments surrounding SNRs and thus disentangle the two progenitor scenarios for Type Ia SNe.
We have been developing a new type of X-ray pixel sensors, XRPIX, allowing us to perform imaging spectroscopy in the wide energy band of 1-20 keV for the future Japanese X-ray satellite FORCE. The XRPIX devices are fabricated with complementary metal -oxide-semiconductor silicon-on-insulator technology, and have the Event-Driven readout mode, in which only a hit event is read out by using hit information from a trigger output function equipped with each pixel. This paper reports on the low-energy X-ray performance of the XRPIX6E device with a Pinned Depleted Diode (PDD) structure. The PDD structure especially reduces the readout noise, and hence is expected to largely improve the quantum efficiencies for low-energy X-rays. While F-K X-rays at 0.68 keV and Al-K X-rays at 1.5 keV are successfully detected in the Frame readout mode, in which all pixels are read out serially without using the trigger output function, the device is able to detect Al-K X-rays, but not F-K X-rays in the Event-Driven readout mode. Non-uniformity is observed in the counts maps of Al-K X-rays in the Event-Driven readout mode, which is due to region-to-region variation of the pedestal voltages at the input to the comparator circuit. The lowest available threshold energy is 1.1 keV for a small region in the device where the non-uniformity is minimized. The noise of the charge sensitive amplifier at the sense node and the noise related to the trigger output function are ~$18~e^-$ (rms) and ~$13~e^-$ (rms), respectively.
We report on results of Chandra X-ray observations of the southwestern part of the supernova remnant (SNR) RX J1713.7$-$3946. We measure proper motions of two X-ray bright blobs, named Blobs A and B, in regions presumably corresponding to the forward shock of the SNR. The measured velocities are $3800 pm 100~mathrm{km}~mathrm{s}^{-1}$ and $2300 pm 200~mathrm{km}~mathrm{s}^{-1}$ for Blobs A and B, respectively. Since a dense molecular clump is located close to Blob B, its slower velocity is attributed to shock deceleration as a result of a shock-cloud interaction. This result provides solid evidence that the forward shock of RX J1713.7$-$3946 is indeed colliding with dense gas discovered through radio observations reported in the literature. The locations and velocity differences of the two blobs lead to an estimate that the shock encountered with the dense gas $sim 100~mathrm{yr}$ ago. The shock velocities, together with cutoff energies of the synchrotron X-ray spectra of the blobs, indicate that particle acceleration in these regions is close to the Bohm limit. Blob B, in particular, is almost at the limit, accelerating particles at the fastest possible rate. We discuss possible influence of the shock-cloud interaction on the efficiency of particle acceleration.
We have been developing P-channel Charge-Coupled Devices (CCDs) for the upcoming X-ray Astronomy Satellite XRISM, planned to be launched in 2021. While the basic design of the CCD camera (Soft X-ray Imager: SXI) is almost the same as that of the lost Hitomi (ASTRO-H) observatory, we are planning to reduce the light leakages that is one of the largest problems recognized in Hitomi data. We adopted a double-layer optical blocking layer on the XRISM CCDs and also added an extra aluminum layer on the backside of them. We develop a newly designed test sample CCD and irradiate it with optical light to evaluate the optical blocking performance. As a result, light leakages are effectively reduced compared with that of the Hitomi CCDs. We thus conclude that the issue is solved by the new design and that the XRISM CCDs satisfy the mission requirement for the SXI.
The synchrotron X-ray stripes discovered in Tychos supernova remnant (SNR) have been attracting attention since they may be evidence for proton acceleration up to PeV. We analyzed Chandra data taken in 2003, 2007, 2009, and 2015 for imaging and spect roscopy of the stripes in the southwestern region of the SNR. Comparing images obtained at different epochs, we find that time variability of synchrotron X-rays is not limited to two structures previously reported but is more common in the region. Spectral analysis of nine bright stripes reveals not only their time variabilities but also a strong anti-correlation between the surface brightness and photon indices. The spectra of the nine stripes have photon indices of Gamma = 2.1--2.6 and are significantly harder than those of the outer rim of the SNR in the same region with Gamma = 2.7--2.9. Based on these findings, we indicate that the magnetic field is substantially amplified, and suggest that particle acceleration through a stochastic process may be at work in the stripes.
Supernova remnants (SNRs) have been regarded as major acceleration sites of Galactic cosmic rays. Recent X-ray studies revealed neutral Fe K$alpha$ line emission from dense gas in the vicinity of some SNRs, which can be best interpreted as K-shell io nization of Fe atoms in the gas by sub-relativistic particles accelerated in the SNRs. In this Letter, we propose a novel method of constraining the composition of particles accelerated in SNRs, which is currently unknown. When energetic heavy ions collide with target atoms, their strong Coulomb field can easily cause simultaneous ejection of multiple inner-shell electrons of the target. This results in shifts in characteristic X-ray line energies, forming distinctive spectral structures. Detection of such structures in the neutral Fe K$alpha$ line strongly supports the particle ionization scenario, and furthermore provides direct evidence of heavy ions in the accelerated particles. We construct a model for the Fe K$alpha$ line structures by various projectile ions utilizing atomic-collision data.
Resonance scattering (RS) is an important process in astronomical objects, because it affects measurements of elemental abundances and distorts surface brightness of the object. It is predicted that RS can occur in plasmas of supernova remnants (SNRs ). Although several authors reported hints of RS in SNRs, no strong observational evidence has been established so far. We perform a high-resolution X-ray spectroscopy of the SNR N49 with the Reflection Grating Spectrometer aboard XMM-Newton. The RGS spectrum of N49 shows a high G-ratio of O VII He$alpha$ lines as well as O VIII Ly$beta$/$alpha$ and Fe XVII (3s-2p)/(3d-2p) ratios which cannot be explained by the emission from a thin thermal plasma. These line ratios can be well explained by the effect of RS. Our result implies that RS has a large impact particularly on a measurement of the oxygen abundance.
Analyzing Chandra data of Tychos supernova remnant (SNR) taken in 2000, 2003, 2007, 2009, and 2015, we search for time variable features of synchrotron X-rays in the southwestern part of the SNR, where stripe structures of hard X-ray emission were pr evious found. By comparing X-ray images obtained at each epoch, we discover a knot-like structure in the northernmost part of the stripe region became brighter particularly in 2015. We also find a bright filamentary structure gradually became fainter and narrower as it moved outward. Our spectral analysis reveal that not only the nonthermal X-ray flux but also the photon indices of the knot-like structure change from year to year. During the period from 2000 to 2015, the small knot shows brightening of $sim 70%$ and hardening of $Delta Gamma sim 0.45$. The time variability can be explained if the magnetic field is amplified to $sim 100~mathrm{mu G}$ and/or if magnetic turbulence significantly changes with time.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا