ترغب بنشر مسار تعليمي؟ اضغط هنا

We have created 3D models of the CMS detector and particle collision events in SketchUp, a 3D modelling program. SketchUp provides a Ruby API which we use to interface with the CMS Detector Description to create 3D models of the CMS detector. With th e Ruby API, we also have created an interface to the JSON-based event format used for the iSpy event display to create 3D models of CMS events. These models have many applications related to 3D representation of the CMS detector and events. Figures produced based on these models were used in conference presentations, journal publications, technical design reports for the detector upgrades, art projects, outreach programs, and other presentations.
63 - Tai Sakuma 2012
The CMS experiment uses missing E_T to both measure processes in the Standard Model and test models of physics beyond the Standard Model. These proceedings show the performance of the missing E_T reconstruction evaluated by using 4.6 fb-1 of proton-p roton collision data at the center-of-mass energy 7 TeV collected in 2011 with the CMS detector at the Large Hadron Collider. Missing E_T was reconstructed based on a particle-flow technique. Jet energy corrections were propagated to missing E_T. After anomalous signals and events were addressed, the missing E_T spectrum was well reproduced by MC simulation. The multiple proton-proton interactions in a single bunch crossing, pile-up events, degraded the performance of the missing E_T reconstruction. Mitigations of this degradation have been developed.
These proceedings show the preliminary results of the dijet cross sections and the dijet longitudinal double spin asymmetries A_LL in polarized proton-proton collisions at sqrt{s} = 200 GeV at the mid-rapidity |eta| < 0.8. The integrated luminosity o f 5.39 pb^{-1} collected during RHIC Run-6 was used in the measurements. The preliminary results are presented as functions of the dijet invariant mass M_jj. The dijet cross sections are in agreement with next-to-leading-order pQCD predictions. The A_LL is compared with theoretical predictions based on various parameterizations of polarized parton distributions of the proton. Projected precision of data analyzed to date from Run-9 are shown.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا