ترغب بنشر مسار تعليمي؟ اضغط هنا

We derived a coordinate-free form of equations of motion for a complete model of a quadrotor UAV with a payload which is connected via a flexible cable according to Lagrangian mechanics on a manifold. The flexible cable is modeled as a system of seri ally-connected links and has been considered in the full dynamic model. A geometric nonlinear control system is presented to exponentially stabilize the position of the quadrotor while aligning the links to the vertical direction below the quadrotor. Numerical simulation and experimental results are presented and a rigorous stability analysis is provided to confirm the accuracy of our derivations. These results will be particularly useful for aggressive load transportation that involves large deformation of the cable.
Nonlinear PID control systems for a quadrotor UAV are proposed to follow an attitude tracking command and a position tracking command. The control systems are developed directly on the special Euclidean group to avoid singularities of minimal attitud e representations or ambiguity of quaternions. A new form of integral control terms is proposed to guarantee almost global asymptotic stability when there exist uncertainties in the quadrotor dynamics. A rigorous mathematical proof is given. Numerical example illustrating a complex maneuver, and a preliminary experimental result are provided.
A 3D pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D pendulum models as special cases. The case where the rigid body is asymmetric and the center of mass is distinct from the pivot location leads to the 3D pendulum. Full and reduced 3D pendulum models are introduced and used to study important features of the nonlinear dynamics: conserved quantities, equilibria, invariant manifolds, local dynamics near equilibria and invariant manifolds, and the presence of chaotic motions. These results demonstrate the rich and complex dynamics of the 3D pendulum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا