ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass models for a sample of 18 late-type dwarf and low surface brightness galaxies show that in almost all cases the contribution of the stellar disks to the rotation curves can be scaled to explain most of the observed rotation curves out to two or three disk scale lengths. The concept of a maximum disk, therefore, appears to work as well for these late-type dwarf galaxies as it does for spiral galaxies. Some of the mass-to-light ratios required in our maximum disk fits are high, however, up to about 15 in the R-band, with the highest values occurring in galaxies with the lowest surface brightnesses. Equally well-fitting mass models can be obtained with much lower mass-to-light ratios. Regardless of the actual contribution of the stellar disk, the fact that the maximum disk can explain the inner parts of the observed rotation curves highlights the similarity in shapes of the rotation curve of the stellar disk and the observed rotation curve. This similarity implies that the distribution of the total mass density is closely coupled to that of the luminous mass density in the inner parts of late-type dwarf galaxies.
We present rotation curves derived for a sample of 62 late-type dwarf galaxies that have been observed as part of the Westerbork HI Survey of Spiral and Irregular Galaxies (WHISP) project. The rotation curves were derived by interactively fitting mod el data cubes to the observed cubes, taking rotation curve shape, HI distribution, inclination, and the size of the beam into account. This makes it possible to correct for the effects of beam smearing. The dwarf galaxies in our sample have rotation-curve shapes that are similar to those of late-type spiral galaxies, in the sense that their rotation curves, when expressed in units of disk scale lengths, rise as steeply in the inner parts and start to flatten at two disk scale lengths. None of the galaxies in our sample have solid-body rotation curves that extend beyond three scale lengths. The logarithmic outer rotation curve slopes are similar between late-type dwarf and spiral galaxies. Thus, whether the flat part of the rotation curve is reached seems to depend more on the extent of the rotation curve than on its amplitude. We also find that the outer rotation curve shape does not strongly depend on luminosity, at least for galaxies fainter than M_R~-19. We find that in spiral galaxies and in the central regions of late-type dwarf galaxies, the shape of the central distribution of light and the inner rise of the rotation curve are related. This implies that galaxies with stronger central concentrations of light also have higher central mass densities, and it suggests that the luminous mass dominates the gravitational potential in the central regions, even in low surface brightness dwarf galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا