ترغب بنشر مسار تعليمي؟ اضغط هنا

The axion is a light pseudoscalar particle which suppresses CP-violating effects in strong interactions and also happens to be an excellent dark matter candidate. Axions constituting the dark matter halo of our galaxy may be detected by their resonan t conversion to photons in a microwave cavity permeated by a magnetic field. The current generation of the microwave cavity experiment has demonstrated sensitivity to plausible axion models, and upgrades in progress should achieve the sensitivity required for a definitive search, at least for low mass axions. However, a comprehensive strategy for scanning the entire mass range, from 1-1000 $mu$eV, will require significant technological advances to maintain the needed sensitivity at higher frequencies. Such advances could include sub-quantum-limited amplifiers based on squeezed vacuum states, bolometers, and/or superconducting microwave cavities. The Axion Dark Matter eXperiment at High Frequencies (ADMX-HF) represents both a pathfinder for first data in the 20-100 $mu$eV range ($sim$5-25 GHz), and an innovation test-bed for these concepts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا