ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - S.M. Aybat , T.C. Rogers 2011
We give an overview of the current status of perturbative QCD factorization theorems in processes that involve transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FF). We enumerate those cases where T MD-factorization is well-established, and mention cases where it is likely to fail. We discuss recent progress in the implementation of specific TMD-factorization calculations, including the implementation of evolution. We also give examples of hard part calculations. We end by discussing future strategies for the implementation of TMD-factorization in phenomenological applications.
332 - P.J. Mulders , T.C. Rogers 2011
In this section, we discuss some basic features of transverse momentum dependent, or unintegrated, parton distribution functions. In particular, when these correlation functions are combined in a factorization formulae with hard processes beyond the simplest cases, there are basic problems with universality and factorization. We discuss some of these problems as well as the opportunities that they offer.
66 - T.C. Rogers , M. Strikman 2009
We propose a simple method for incorporating correlations into the impact parameter space description of multiple (semi-)hard partonic collisions in high energy hadron-hadron scattering. The perturbative QCD input is the standard factorization theore m for inclusive dijet production with a lower cutoff on transverse momentum. The width of the transverse distribution of hard partons is fixed by parameterizations of the two-gluon form factor. We then reconstruct the hard contribution to the total inelastic profile function and obtain corrections due to correlations to the more commonly used eikonal description. Estimates of the size of double correlation corrections are based on the rate of double collisions measured at the Tevatron. We find that, if typical values for the lower transverse momentum cutoff are used in the calculation of the inclusive hard dijet cross section, then the correlation corrections are necessary for maintaining consistency with expectations for the total inelastic proton-proton cross section at LHC energies.
Motivated by the need to correct the potentially large kinematic errors in approximations used in the standard formulation of perturbative QCD, we reformulate deeply inelastic lepton-proton scattering in terms of gauge invariant, universal parton cor relation functions which depend on all components of parton four-momentum. Currently, different hard QCD processes are described by very different perturbative formalisms, each relying on its own set of kinematical approximations. In this paper we show how to set up formalism that avoids approximations on final-state momenta, and thus has a very general domain of applicability. The use of exact kinematics introduces a number of significant conceptual shifts already at leading order, and tightly constrains the formalism. We show how to define parton correlation functions that generalize the concepts of parton density, fragmentation function, and soft factor. After setting up a general subtraction formalism, we obtain a factorization theorem. To avoid complications with Ward identities the full derivation is restricted to abelian gauge theories; even so the resulting structure is highly suggestive of a similar treatment for non-abelian gauge theories.
The perturbative QCD formula for minijet production consitutes an important ingredient in models describing the total cross section and multiparticle production in hadron-hadron scattering at high energies. Using arguments based on s-channel unitarit y we set bounds on the minimum value of p_T for which the leading twist minijet formula can be used. For large impact parameters where correlations between partons appear to be small we find that the minimum value of p_T should be greater than 2.5 GeV for LHC energies and greater than 3.5 GeV for cosmic ray energies of about 50 TeV. We also argue that for collisions with values of impact parameters typical for heavy particle production the values of minimum p_T are likely to be considerably larger. We also analyze and quantify the potential role of saturation effects in the gluon density. We find that although saturation effects alone are not sufficient to restore unitarity, they are likely to play an important role at LHC energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا