ترغب بنشر مسار تعليمي؟ اضغط هنا

We apply the background field (BF) method to Non-Relativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner by matching the NRQCD pre diction for particular on-shell processes with those of relativistic continuum QCD. We explain how the BF method is implemented in automated perturbation theory and discuss the technique for matching the relativistic and non-relativistic theories. We compute the one-loop radiative corrections to the sigma.B and Darwin terms for the NRQCD action currently used in simulations, as well as the one-loop coefficients of the spin-dependent O(alpha^2) four-fermion contact terms. The effect of the corrections on the hyperfine splitting of bottomonium is estimated using earlier simulation results; the corrected lattice prediction is found to be in agreement with experiment. Agreement of the hyperfine splitting of bottomonium and the B-meson system is confirmed by recent simulation studies (Dowdall et al.) which include our NRQCD radiative corrections for the first time.
We present improved results for the B and D meson spectrum from lattice QCD including the effect of u/d,s and c quarks in the sea. For the B mesons the Highly Improved Staggered Quark action is used for the sea and light valence quarks and NonRelativ istic QCD for the b quark including O(alpha_s) radiative corrections to many of the Wilson coefficients for the first time. The D mesons use the Highly Improved Staggered Quark action for both valence quarks on the same sea. We find M_{B_s}-M_B=84(2) MeV, M_{B_s}=5.366(8) GeV, M_{B_c}=6.278(9) GeV, M_{D_s}=1.9697(33) GeV, and M_{D_s}-M_{D}=101(3) MeV. Our results for the B meson hyperfine splittings are M_{B^*}-M_{B}=50(3) MeV, M_{B_s^*}-M_{B_s}=52(3) MeV, in good agreement with existing experimental results. This demonstrates that our perturbative improvement of the NRQCD chromo-magnetic coupling works for both heavyonium and heavy-light mesons. We predict M_{B_c^*}-M_{B_c}=54(3) MeV. We also present first results for the radially excited B_c states as well as the orbitally excited scalar B_c0^* and axial vector B_c1 mesons.
We present an algorithm to automatically derive Feynman rules for lattice perturbation theory in background field gauge. Vertices with an arbitrary number of both background and quantum legs can be derived automatically from both gluonic and fermioni c actions. The algorithm is a generalisation of our earlier algorithm based on prior work by Luscher and Weisz. We also present techniques allowing for the parallelisation of the evaluation of the often rather complex lattice Feynman rules that should allow for efficient implementation on GPUs, but also give a significant speed-up when calculating the derivatives of Feynman diagrams with respect to external momenta.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا